最全Python和OpenCV的人脸和手部地标检测!图像处理必学模块!(1),jvm 面试

文末有福利领取哦~

👉一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。img

👉二、Python必备开发工具

img
👉三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
img

👉 四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
img

👉五、Python练习题

检查学习结果。
img

👉六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
img

img

👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • **静态图像模式:**它用于指定输入图像是否必须被视为静态图像或视频流。默认值为false。

  • **模型复杂性:**它用于描述姿态地标模型的复杂度:0,1,或2。随着模型复杂度的增加,地标精度和延迟增加。默认值为1。

  • **平滑的地标:**该参数通过对不同输入图像的姿态标志进行滤波,减少预测中的抖动。默认值为True。

  • **最小检测可信度:**它被用来指定从人-检测模型中检测成功的最小置信度值。可以在[0.01.0]中指定一个值。默认值为0.5。

  • **最小跟踪信心:**它被用来指定从地标跟踪模型中检测成功的最小置信度值。可以在[0.01.0]中指定一个值。默认值为0.5。

第三步:从图像中检测脸部和手部的地标。整体模型对图像进行处理,为面部、左手和右手生成地标,并检测

  1. 使用OpenCV从摄像机中连续捕获帧。

  2. 将BGR映像转换为RGB映像,并使用初始化的整体模型进行预测。

  3. 整体模型所做的预测保存在结果变量中,从该变量中,我们可以分别使用Resul.Faces_landmark、Resul.right_Hand_landmark、Resul.左侧_Hand_landmark来访问地标。

  4. 使用绘图功能在图像上绘制检测到的地标。

  5. 显示结果图像。

Python 3


# (0) in VideoCapture is used to connect to your compyter's default camera

capture = cv2.VideoCapture( 0 )

# Initializing current time and precious time for calculating the FPS

previousTime = 0

currentTime = 0

while capture.isOpened():

# capture frame by frame

ret, frame = capture.read()

# resizing the frame for better view

frame = cv2.resize(frame, ( 800 , 600 ))

# Converting the from from BGR to RGB

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

# Making predictions using holistic model

# To improve performance, optionally mark the image as not writeable to

# pass by reference.

image.flags.writeable = False

results = holistic_model.process(image)

image.flags.writeable = True

# Converting back the RGB image to BGR

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

# Drawing the Facial Landmarks

mp_drawing.draw_landmarks(

image,

results.face_landmarks,

mp_holistic.FACE_CONNECTIONS,

mp_drawing.DrawingSpec(

color = ( 255 , 0 , 255 ),

thickness = 1 ,

circle_radius = 1

),

mp_drawing.DrawingSpec(

color = ( 0 , 255 , 255 ),

thickness = 1 ,

circle_radius = 1

)

)

# Drawing Right hand Land Marks

mp_drawing.draw_landmarks(

image,

results.right_hand_landmarks,

mp_holistic.HAND_CONNECTIONS

)

# Drawing Left hand Land Marks

mp_drawing.draw_landmarks(

image,

results.left_hand_landmarks,

mp_holistic.HAND_CONNECTIONS

)

# Calculating the FPS

currentTime = time.time()

fps = 1 / (currentTime - previousTime)

previousTime = currentTime

# Displaying FPS on the image

cv2.putText(image, str ( int (fps)) + " FPS" , ( 10 , 70 ), cv2.FONT_HERSHEY_COMPLEX, 1 , ( 0 , 255 , 0 ), 2 )

# Display the resulting image

cv2.imshow( "Facial and Hand Landmarks" , image)

# Enter key 'q' to break the loop

if cv2.waitKey( 5 ) & 0xFF = = ord ( 'q' ):

break

# When all the process is done

# Release the capture and destroy all windows

capture.release()

cv2.destroyAllWindows()

整体模型可产生468个正面地标、21个左侧地标和21个右侧地标.可以通过指定所需地标的索引来访问单个地标。例:结果.左_HAND_landmark.地标[0]。您可以使用以下代码获取所有单个地标的索引:

Python 3


# Code to access landmarks

for landmark in mp_holistic.HandLandmark:

print (landmark, landmark.value)

print (mp_holistic.HandLandmark.WRIST.value)

HandLandmark.WRIST 0

HandLandmark.THUMB_CMC 1

最后

🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值