文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
-
**静态图像模式:**它用于指定输入图像是否必须被视为静态图像或视频流。默认值为false。
-
**模型复杂性:**它用于描述姿态地标模型的复杂度:0,1,或2。随着模型复杂度的增加,地标精度和延迟增加。默认值为1。
-
**平滑的地标:**该参数通过对不同输入图像的姿态标志进行滤波,减少预测中的抖动。默认值为True。
-
**最小检测可信度:**它被用来指定从人-检测模型中检测成功的最小置信度值。可以在[0.01.0]中指定一个值。默认值为0.5。
-
**最小跟踪信心:**它被用来指定从地标跟踪模型中检测成功的最小置信度值。可以在[0.01.0]中指定一个值。默认值为0.5。
第三步:从图像中检测脸部和手部的地标。整体模型对图像进行处理,为面部、左手和右手生成地标,并检测
-
使用OpenCV从摄像机中连续捕获帧。
-
将BGR映像转换为RGB映像,并使用初始化的整体模型进行预测。
-
整体模型所做的预测保存在结果变量中,从该变量中,我们可以分别使用Resul.Faces_landmark、Resul.right_Hand_landmark、Resul.左侧_Hand_landmark来访问地标。
-
使用绘图功能在图像上绘制检测到的地标。
-
显示结果图像。
Python 3
# (0) in VideoCapture is used to connect to your compyter's default camera
capture
=
cv2.VideoCapture(
0
)
# Initializing current time and precious time for calculating the FPS
previousTime
=
0
currentTime
=
0
while
capture.isOpened():
# capture frame by frame
ret, frame
=
capture.read()
# resizing the frame for better view
frame
=
cv2.resize(frame, (
800
,
600
))
# Converting the from from BGR to RGB
image
=
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Making predictions using holistic model
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable
=
False
results
=
holistic_model.process(image)
image.flags.writeable
=
True
# Converting back the RGB image to BGR
image
=
cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Drawing the Facial Landmarks
mp_drawing.draw_landmarks(
image,
results.face_landmarks,
mp_holistic.FACE_CONNECTIONS,
mp_drawing.DrawingSpec(
color
=
(
255
,
0
,
255
),
thickness
=
1
,
circle_radius
=
1
),
mp_drawing.DrawingSpec(
color
=
(
0
,
255
,
255
),
thickness
=
1
,
circle_radius
=
1
)
)
# Drawing Right hand Land Marks
mp_drawing.draw_landmarks(
image,
results.right_hand_landmarks,
mp_holistic.HAND_CONNECTIONS
)
# Drawing Left hand Land Marks
mp_drawing.draw_landmarks(
image,
results.left_hand_landmarks,
mp_holistic.HAND_CONNECTIONS
)
# Calculating the FPS
currentTime
=
time.time()
fps
=
1
/
(currentTime
-
previousTime)
previousTime
=
currentTime
# Displaying FPS on the image
cv2.putText(image,
str
(
int
(fps))
+
" FPS"
, (
10
,
70
), cv2.FONT_HERSHEY_COMPLEX,
1
, (
0
,
255
,
0
),
2
)
# Display the resulting image
cv2.imshow(
"Facial and Hand Landmarks"
, image)
# Enter key 'q' to break the loop
if
cv2.waitKey(
5
) &
0xFF
=
=
ord
(
'q'
):
break
# When all the process is done
# Release the capture and destroy all windows
capture.release()
cv2.destroyAllWindows()
整体模型可产生468个正面地标、21个左侧地标和21个右侧地标.可以通过指定所需地标的索引来访问单个地标。例:结果.左_HAND_landmark.地标[0]。您可以使用以下代码获取所有单个地标的索引:
Python 3
# Code to access landmarks
for
landmark
in
mp_holistic.HandLandmark:
print
(landmark, landmark.value)
print
(mp_holistic.HandLandmark.WRIST.value)
HandLandmark.WRIST 0
HandLandmark.THUMB_CMC 1
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!