一、进制的基础知识
1、什么是进制?
进制也就是进位计数制,是人为定义的带进位的计数方法。对于任何一种进制X进制,就表示每一位置上的数运算时都是逢X进一位。 十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,x进制就是逢x进位。
2、生活中常见的进制有哪些?
10进制、60进制、12进制、24进制等;
3、n进制如何数数?
10进制:0 1 2 3 4 5 6 7 8 9 10 11……
2进制:0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000……
8进制:0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21……
16进制:0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20……
二、十进制转换为R进制
1、十进制整数转换成R进制的整数: 除R取余法 。☆☆☆☆☆
2、学习技巧:可以参照短除法,短除法的作用是用来拆出10进制n的每一位,可以理解为10进制转10进制,使用的方法是除10取余,然后倒过来;
那么10进制转R进制,自然就是除R取余,然后倒过来;
三、R进制转换为十进制
1、R进制转10进制整数: 按权展开 。
按权展开:基数为N的数字,只要将各位数字与它的权相乘,其积相加,和数就是十进制数。
2、学习技巧: 可以参照10进制整数计算机制来学习 ;
12345=5 * 1 + 4 * 10 + 3 * 100 + 2 * 1000 + 1 * 10000
=5 * 100 + 4 * 101 + 3 * 102 + 2 * 103 + 1 * 104
正整数N转换成一个二进制数
题目描述
输入一个不大于32767的整数n,将它转换成一个二进制数。
输入
输入只有一行,包括一个整数n(0<=n<=32767)
输出
输出只有一行。
样例
输入
100
输出
1100100
定义字符串存储N转换的二进制数
用短除法除2取余,将余数逆序存入字符串r。