5.1 最小生成树
-
定义
对一个带权连通无向图 G = ( V , E ) G=(V,E) G=(V,E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。
设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(MST)。
-
性质
1.最小生成树可能有多个,但边的权值之和总是唯一且最小的;
2.最小生成树的边数=顶点数-1。砍掉一条则不连通,增加一条会出现回路;
3.如果一个连通图本身就是一棵树,则其最小生成树就是它本身;
4.只有连通图才有最小生成树,非连通图只有生成森林。
5.1.1 Prim算法
-
定义
从某一个顶点开始构建生成树;
每次将代价最小的新顶点纳入生成树,直到所有顶点都纳入为止。
- 即选最小权值的结点
-
时间复杂度
O ( ∣ V ∣ 2 ) O(|V|^2) O(∣V∣2),适用于稠密图(|E|大的)。
-
算法的实现思想
-
思路:
从 V 0 V_0 V0开始,总共需要n-1轮处理。
第一轮处理:循环遍历所有个结点,找到
lowCast
最低的,且还没加入树的顶点。再次循环遍历,更新还没加入的各个顶点的
lowCast
值。 -
代码步骤:
1.创建
isJoin
数组,初始为false,判断结点是否加入树。2.创建
lowCost
数组,用于存储到该结点的最短距离。3.从 v 0 v_0 v0开始,将与其连接的权值加入到
lowCost
数组中。4.遍历
lowCast
数组,找到最小值,将其加入树中,并继续遍历与其相连的边。
-
5.1.2 Kruskal算法
-
定义
每次选则一条权值最小的边,使这条边的两头连通(原本已经连通的不选),直到所有结点都连通。
- 即每次选最小的边
-
时间复杂度
O ( ∣ E ∣ l o g 2 ∣ E ∣ ) O(|E|log_2|E|) O(∣E∣log2∣E∣),适用于边稀疏图。
-
算法的实现思想
-
思路:
初始:将各条边按权值排序。
共执行e轮,每轮判断两个顶点是否属于同一集合,需要 O ( l o g 2 e ) O(log_2e) O(log2e)
-
5.1.3 最小生成树代码
A.邻接矩阵
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#define V 5 // 图的顶点数
// 找到距离集合最近的顶点
int min_key(int key[], bool mst_set[]) {
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++) {
if (mst_set[v] == false && key[v] < min) {
min = key[v];
min_index = v;
}
}
return min_index;
}
// 打印最小生成树
void print_mst(int parent[], int graph[V][V]) {
printf("Edge Weight\n");
for (int i = 1; i < V; i++)
printf("%d - %d %d \n", parent[i], i, graph[i][parent[i]]);
}
// Prim算法
void prim_mst(int graph[V][V]) {
int parent[V]; // 存放最小生成树的父节点
int lowCost[V]; // 用于存放顶点到最小生成树的最小权重
bool isJoin[V]; // 记录顶点是否已经加入最小生成树
for (int i = 0; i < V; i++) {
lowCost[i] = INT_MAX;
isJoin[i] = false;
}
lowCost[0] = 0; // 初始点为0
parent[0] = -1; // 根节点没有父节点
for (int count = 0; count < V - 1; count++) {
int u = min_key(lowCost, isJoin);
isJoin[u] = true;
for (int v = 0; v < V; v++) {
if (graph[u][v] && !isJoin[v] && graph[u][v] < lowCost[v]) {
parent[v] = u;
lowCost[v] = graph[u][v];
}
}
}
print_mst(parent, graph);
}
// Kruskal算法
// 结构体用于表示边
struct Edge {
int src, dest, weight;
};
// 比较函数,用于排序
int compare(const void* a, const void* b) {
return ((struct Edge*)a)->weight - ((struct Edge*)b)->weight;
}
// 查找函数,用于查找集合的根节点
int find(int parent[], int i) {
if (parent[i] == -1)
return i;
return find(parent, parent[i]);
}
// 合并函数,用于合并两个集合
void Union(int parent[], int x, int y) {
int xset = find(parent, x);
int yset = find(parent, y);
parent[xset] = yset;
}
// Kruskal算法
void kruskal_mst(int graph[V][V]) {
struct Edge result[V]; // 用于存放最小生成树的边
int e = 0; // 表示result数组中的边数
int i = 0; // 表示当前考虑的边
// 边集合
struct Edge edges[V*V];
for (int u = 0; u < V; u++) {
for (int v = u + 1; v < V; v++) {
if (graph[u][v] != 0) {
edges[e].src = u;
edges[e].dest = v;
edges[e].weight = graph[u][v];
e++;
}
}
}
// 根据权重对边进行排序
qsort(edges, e, sizeof(edges[0]), compare);
int parent[V]; // 用于记录每个顶点的父节点
for (int v = 0; v < V; v++)
parent[v] = -1;
// 最小生成树的边数小于V-1时继续
while (i < V - 1 && e > 0) {
struct Edge next_edge = edges[--e];
// 检查是否会产生环
int x = find(parent, next_edge.src);
int y = find(parent, next_edge.dest);
if (x != y) {
result[i++] = next_edge;
Union(parent, x, y);
}
}
printf("Edge Weight\n");
for (int i = 0; i < V - 1; i++)
printf("%d - %d %d \n", result[i].src, result[i].dest, result[i].weight);
}
// 测试主函数
int main() {
int graph[V][V] = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
printf("Prim's Minimum Spanning Tree:\n");
prim_mst(graph);
printf("\nKruskal's Minimum Spanning Tree:\n");
kruskal_mst(graph);
return 0;
}
B.邻接表
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>
#define MaxVertexNum 100
#define INF 9999
typedef struct ArcNode {
int adjvex;
int weight;
struct ArcNode *next;
} ArcNode;
typedef struct VNode {
int data;
ArcNode *first;
} VNode, AdjList[MaxVertexNum];
typedef struct {
AdjList vertices;
int vexnum, arcnum;
} ALGraph;
void InitALGraph(ALGraph *G, int vexnum, int arcnum) {
G->vexnum = vexnum;
G->arcnum = arcnum;
for (int i = 0; i < vexnum; i++) {
G->vertices[i].data = i;
G->vertices[i].first = NULL;
}
}
void AddEdgeUndirectedALGraph(ALGraph *G, int v1, int v2, int weight) {
ArcNode *arcNode1 = (ArcNode *)malloc(sizeof(ArcNode));
arcNode1->adjvex = v2;
arcNode1->weight = weight;
arcNode1->next = G->vertices[v1].first;
G->vertices[v1].first = arcNode1;
ArcNode *arcNode2 = (ArcNode *)malloc(sizeof(ArcNode));
arcNode2->adjvex = v1;
arcNode2->weight = weight;
arcNode2->next = G->vertices[v2].first;
G->vertices[v2].first = arcNode2;
}
void PrintALGraph(ALGraph G) {
for (int i = 0; i < G.vexnum; i++) {
printf("%d -> ", G.vertices[i].data);
ArcNode *p = G.vertices[i].first;
while (p != NULL) {
printf("(%d, %d) ", p->adjvex, p->weight);
p = p->next;
}
printf("\n");
}
}
// Prim算法
void Prim(ALGraph G) {
int lowCost[G.vexnum], parent[G.vexnum];
bool inMST[G.vexnum];
for (int i = 0; i < G.vexnum; i++) {
lowCost[i] = INF;
parent[i] = -1;
inMST[i] = false;
}
lowCost[0] = 0;
for (int i = 0; i < G.vexnum - 1; i++) {
int minIndex, minCost = INF;
for (int j = 0; j < G.vexnum; j++) {
if (!inMST[j] && lowCost[j] < minCost) {
minCost = lowCost[j];
minIndex = j;
}
}
inMST[minIndex] = true;
ArcNode *p = G.vertices[minIndex].first;
while (p != NULL) {
if (!inMST[p->adjvex] && p->weight < lowCost[p->adjvex]) {
lowCost[p->adjvex] = p->weight;
parent[p->adjvex] = minIndex;
}
p = p->next;
}
}
printf("Edge Weight\n");
for (int i = 1; i < G.vexnum; i++) {
printf("%d - %d %d\n", parent[i], i, lowCost[i]);
}
}
// Kruskal算法
typedef struct {
int src, dest, weight;
} Edge;
int find(int parent[], int i) {
if (parent[i] == -1)
return i;
return find(parent, parent[i]);
}
void Union(int parent[], int x, int y) {
int xset = find(parent, x);
int yset = find(parent, y);
parent[xset] = yset;
}
int compare(const void *a, const void *b) {
return ((Edge *)a)->weight - ((Edge *)b)->weight;
}
void Kruskal(ALGraph G) {
Edge result[G.arcnum];
Edge edges[G.arcnum];
int parent[G.vexnum];
int e = 0;
for (int i = 0; i < G.vexnum; i++) {
ArcNode *p = G.vertices[i].first;
while (p != NULL) {
if (i < p->adjvex) {
edges[e].src = i;
edges[e].dest = p->adjvex;
edges[e].weight = p->weight;
e++;
}
p = p->next;
}
}
qsort(edges, G.arcnum, sizeof(Edge), compare);
for (int i = 0; i < G.vexnum; i++)
parent[i] = -1;
int i = 0, j = 0;
while (i < G.vexnum - 1 && j < G.arcnum) {
Edge next_edge = edges[j++];
int x = find(parent, next_edge.src);
int y = find(parent, next_edge.dest);
if (x != y) {
result[i++] = next_edge;
Union(parent, x, y);
}
}
printf("Edge Weight\n");
for (int i = 0; i < G.vexnum - 1; i++) {
printf("%d - %d %d\n", result[i].src, result[i].dest, result[i].weight);
}
}
int main() {
ALGraph G;
InitALGraph(&G, 5, 7);
AddEdgeUndirectedALGraph(&G, 0, 1, 2);
AddEdgeUndirectedALGraph(&G, 0, 3, 6);
AddEdgeUndirectedALGraph(&G, 1, 2, 3);
AddEdgeUndirectedALGraph(&G, 1, 3, 8);
AddEdgeUndirectedALGraph(&G, 1, 4, 5);
AddEdgeUndirectedALGraph(&G, 2, 4, 7);
AddEdgeUndirectedALGraph(&G, 3, 4, 9);
PrintALGraph(G);
printf("Prim's Minimum Spanning Tree:\n");
Prim(G);
printf("\nKruskal's Minimum Spanning Tree:\n");
Kruskal(G);
return 0;
}