给出一个无符号的十进制的正整数N,求这个数N的十六进制。
“除R取余法”:十进制整数转换成R进制整数,可用十进制整数连续地除以R,每次除法获得的余数即为相应R进制数一位,最后商为零时,按逆序输出结果。
例如十进制数92转换为十六进制即为5C。
解析:设a为余数,b为商。
a=92%16=12,b=92/16=5,这时候,第一个余数是12.
a=5%16=5,b=5/16=0。第二个余数为5。
由十六进制可知,12对应的是C,所以92的十六进制数为5C。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int main(){
int N;
int i=0;
int t;
char a[100];
char b[20]="0123456789ABCDEF";
cin>>N;
if(N==0){
cout<<'0';//要考虑0的情况
}
while(N!=0){
t=N%16;//取余
a[i]=b[t];//如例题,第一个余数是12,则b[12]=C,与b数组里的字符对应相等,再用一个a数组来存放这个值
N/=16;
i++;
}
for(int j=i-1;j>=0;j--){ //逆序输出数组a里的值
cout<<a[j];
}
return 0;
}