AcWing 204 表达整数的奇怪方式

题目描述:

给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(mod ai)。

输入格式

第1行包含整数n。第2..n行:每i+1行包含两个整数ai和mi,数之间用空格隔开。

输出格式

输出最小非负整数x,如果x不存在,则输出-1。如果存在x,则数据保证x一定在64位整数范围内。

数据范围

1≤ai≤2^31−1,0≤mi<ai,1≤n≤25

输入样例:

2
8 7
11 9


输出样例:

31

我们怎么思考这样的题呢?我们都会解多元一次方程,不断进行方程的合并即可。

那我们能用类似的思路来做这个同余方程嘛。答案是可以的。

设第一个式子是x \equiv m_1(mod \ a_1),那么我们可以得到一个式子x = k_1a_1 + m_1

同理我们得到x = k_2 a_2 + m_2。我们尝试合并一下这个式子得到

k_1a_1+m_1 = k_2 a_2 + m_2

k_1a_1- k_2 a_2 = m_2 - m_1

x = k_1, y= k_2, a = a_1, b = -a_2, c= m_2 - m_1

ax+by=c

是不是感觉很熟悉,合并两个同余方程,居然可以用拓展欧几里得算法来解。如果你不太了解拓展欧几里得算法,建议去查阅资料或者直接阅读我之前的文章拓展欧几里得算法-数论代码笔记(超级细节)

 由拓展欧几里得算法我们能够算出k_1, k_2,甚至我们还能知道如果gcd(a1, a2)不能整除 m_2-m_1时,这个方程组无解。

那现在我们关心的是,这两个方程合并之后的方程能咋表示呢?

显然,我们需要把这个方程表示成类似于x = ka +m的形式。我们已经得出了k_1 = k_{special} + K k_{common},其中k_{special}由拓展欧几里得算法求出,k_{common} = abs(\frac{a2}{d})K为整数集。我们把这个东西代入x = k_1a_1 + m_1,可以得到x = (k_{special}(m_2-m_1) / gcd(a1, a2))+ Kk_{common})a_1 + m_1

因为我们想求最小的非负整数x,所以最后一定是k = 0,从而x = m_1

因为这个m_1一定是正数,所以我们要求最小的m1,就一定要让之前的k_1能取最小。

所以下面代码里面有两句话

k1 *= (m2 - m1) / d;
k1 = (k1 % (a2 / d) + a2 / d) % (a2 / d);

这样就能求出最小的k_1,进而求出最小的m_1,让这个m_1作为我们新方程的m

但是不能只改m,还需要改a,a怎么改呢,我们观察到最后x那一块里面有Kk_{common}a_1,也就是a_1a_2 / gcd(a1, a2)。我们直接令

ll a = abs(a1 / d * a2);

即可。

代码如下:

#include <cstdio>
#include <iostream>
using namespace std;
typedef long long LL;
int n;
LL exgcd(LL a, LL b, LL &x, LL &y){
    if(b == 0){
        x = 1, y = 0;
        return a;
    }

    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
LL inline mod(LL a, LL b){
    return ((a % b) + b) % b;
}
int main(){
    scanf("%d", &n);
    LL a1, m1;
    scanf("%lld%lld", &a1, &m1);
    for(int i = 1; i < n; i++){
        LL a2, m2, k1, k2;
        scanf("%lld%lld", &a2, &m2);
        LL d = exgcd(a1, -a2, k1, k2);
        if((m2 - m1) % d){ puts("-1"); return 0; }
        k1 = mod(k1 * (m2 - m1) / d, abs(a2 / d));
        m1 = k1 * a1 + m1;
        a1 = abs(a1 / d * a2);
    }
    printf("%lld\n", m1);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值