用 Python 定义 Schema 并生成 Parquet 文件

本文介绍如何在 Python 中定义 Parquet 文件的 Schema,并填充数据生成 Parquet 文件。通过示例展示了简单字段和含嵌套字段的 Schema 定义,使用 pandas 和 pyarrow 模块进行操作,并通过 parquet-tools 进行验证。
摘要由CSDN通过智能技术生成

  原来用 Java 和 Python 实现过 Avro 转换成 Parquet 格式,所以 Schema 都是在 Avro 中定义的。这里要尝试的是如何定义 Parquet 的 Schema, 然后据此填充数据并生成 Parquet 文件。

  本文将演示两个例子,一个是没有层级的两个字段,另一个是含于嵌套级别的字段,将要使用到的 Python 模块有 pandas 和 pyarrow

简单字段定义

定义 Schema 并生成 Parquet 文件

import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq

# 定义 Schema
schema = pa.schema([
    ('id', pa.int32()),
    ('email', pa.string())
])

# 准备数据
ids = pa.array([1, 2], type = pa.int32())
emails = pa.array(['first@example.com', 'second@example.com'], pa.string())

# 生成 Parquet 数据
batch = pa.RecordBatch.from_arrays(
    [ids, emails],
    schema = schema
)
table = pa.Table.from_batches([batch])

# 写 Parquet 文件 plain.parquet
pq.write_table(table, 'plain.parquet')
import pandas as pd

import pyarrow as pa

import pyarrow . parquet as pq

# 定义 Schema

schema = pa . schema ( [

     ( 'id' , pa . int32 ( ) ) ,

     ( 'email' , pa . string ( ) )

] )

# 准备数据

ids = pa . array ( [ 1 , 2 ] , type = pa . int32 ( ) )

emails = pa . array ( [ 'first@example.com' , 'second@example.com' ] , pa . string ( ) )

# 生成 Parquet 数据

batch = pa . RecordBatch . from_arrays (

     [ ids , emails ] ,

     schema = schema

)

table = pa 
生成Parquet格式文件需要使用Parquet工具包,以下是使用Java生成Parquet格式文件的示例代码: ```java import org.apache.hadoop.fs.Path; import org.apache.parquet.column.ParquetProperties; import org.apache.parquet.example.data.Group; import org.apache.parquet.example.data.simple.SimpleGroupFactory; import org.apache.parquet.hadoop.ParquetFileWriter.Mode; import org.apache.parquet.hadoop.ParquetWriter; import org.apache.parquet.hadoop.example.GroupWriteSupport; import org.apache.parquet.hadoop.metadata.CompressionCodecName; public class GenerateParquetFile { public static void main(String[] args) throws Exception { String fileName = "example.parquet"; // Create a Group object SimpleGroupFactory groupFactory = new SimpleGroupFactory(GroupWriteSupport.getSchema()); Group group = groupFactory.newGroup() .append("id", 1) .append("name", "Tom") .append("age", 25) .append("score", 89.5f); // Create a ParquetWriter object Path path = new Path(fileName); GroupWriteSupport writeSupport = new GroupWriteSupport(); ParquetWriter<Group> writer = new ParquetWriter<>(path, writeSupport, CompressionCodecName.SNAPPY, ParquetWriter.DEFAULT_BLOCK_SIZE, ParquetWriter.DEFAULT_PAGE_SIZE, ParquetWriter.DEFAULT_PAGE_SIZE, true, false, ParquetProperties.WriterVersion.PARQUET_2_0, Mode.CREATE); // Write the Group object to the Parquet file writer.write(group); // Close the ParquetWriter object writer.close(); } } ``` 这段代码使用SimpleGroupFactory创建了一个Group对象,然后使用ParquetWriter将该对象写入Parquet文件中。需要注意的是,需要使用GroupWriteSupport类指定Parquet schema
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值