第十三届蓝桥杯Python组复盘(C++实现)

全排列的价值

在这里插入图片描述

题解 动态规划
#include <iostream>
using namespace std;

typedef unsigned long long LL;

const LL MOD = 998244353;
const int N = 1000005;

LL n, ans, cnt;
LL f[N];//只考虑前i个数的情况下的价值之和
LL factor = 1;//n!



int main() {
    scanf("%llu", &n);
    //f[2] = 1;
    LL t3;
    for(LL i = 2; i <= n; ++i) {
        f[n] = ((i * f[i - 1] % MOD) + ((i - 1) * i  / 2) * factor % MOD) % MOD;//除法前不能%MOD
        factor = (factor * i) % MOD;
    }
    printf("%llu", f[n]);
    
    
    //答案取模
    return 0;
}**加粗样式**
注意点

factor 一定要乘在 (i - 1) * i / 2 的后面,因为factor中使用了%MOD,而除法取模需要逆元;若factor不取模,会爆long long

技能升级

在这里插入图片描述

题解
法一:优先队列(大根堆) O(M*logM) 可过50%
#include <iostream>
#include <queue>
using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int N = 10e5 + 5;

struct node {
    LL val;//当前技能升级后获得的点数
    int idx;//对应的下标
    //一定要用friend,否则要写在全局中
    friend bool operator<(const node &n1,const node &n2){
        return n1.val < n2.val;
    }
};

LL A[N], B[N];
LL ans;
priority_queue<node> que;

int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++i) {
        scanf("%lld%lld", &A[i], &B[i]);
        que.push({A[i], i});
    }
    while(m--) {
        auto t = que.top();
        ans += t.val;
        if(t.val - B[t.idx] > 0) {
            que.push({t.val - B[t.idx], t.idx});
        }
        que.pop();
       
    }
    printf("%lld", ans);
    return 0;
}
法二:二分法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值