From: ICCV 2023
Paper: https://openaccess.thecvf.com/content/ICCV2023/papers/Wang_DIRE_for_Diffusion-Generated_Image_Detection_ICCV_2023_paper.pdf
Code: https://github.com/ZhendongWang6/DIRE
文章目录
随着扩散模型在图像生成领域的广泛应用,其潜在的恶意滥用问题引发了关注。本文提出一种名为 DIffusion Reconstruction Error(DIRE)的图像表示方法,用于检测扩散生成图像,并建立了一个全面的扩散生成基准数据集 DiffusionForensics,以评估相关检测器的性能。
动机
一张真实图像和四张分别由扩散模型(DDPM、iDDPM、ADM 和 PNDM)生成的图像的 DIRE 表示。与扩散生成的图像相比,真实图像的 DIRE 值往往更大。