DIRE: DIRE for Diffusion-Generated Image Detection

在这里插入图片描述

From: ICCV 2023
Paper: https://openaccess.thecvf.com/content/ICCV2023/papers/Wang_DIRE_for_Diffusion-Generated_Image_Detection_ICCV_2023_paper.pdf
Code: https://github.com/ZhendongWang6/DIRE


随着扩散模型在图像生成领域的广泛应用,其潜在的恶意滥用问题引发了关注。本文提出一种名为 DIffusion Reconstruction Error(DIRE)的图像表示方法,用于检测扩散生成图像,并建立了一个全面的扩散生成基准数据集 DiffusionForensics,以评估相关检测器的性能。

动机

一张真实图像和四张分别由扩散模型(DDPM、iDDPM、ADM 和 PNDM)生成的图像的 DIRE 表示。与扩散生成的图像相比,真实图像的 DIRE 值往往更大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AkanthaWang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值