七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。
于是 TYVJ 今年举办了一次线下七夕祭。
Vani 同学今年成功邀请到了 cl 同学陪他来共度七夕,于是他们决定去 TYVJ 七夕祭游玩。
TYVJ 七夕祭和 1 区的夏祭的形式很像。
矩形的祭典会场由 N 排 M 列共计 N×M个摊点组成。
虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。
Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。
不过 zhq 告诉 Vani,摊点已经随意布置完毕了,如果想满足 cl 的要求,唯一的调整方式就是交换两个相邻的摊点。
两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。
由于 zhq 率领的 TYVJ 开发小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。
现在 Vani 想知道他的两个要求最多能满足多少个。
在此前提下,至少需要交换多少次摊点。
输入格式
第一行包含三个整数 N 和 M 和 T,T 表示 cl 对多少个摊点感兴趣。
接下来 T 行,每行两个整数 x,y,表示 cl 对处在第 x 行第 y 列的摊点感兴趣。
输出格式
首先输出一个字符串。
如果能满足 Vani 的全部两个要求,输出 both;
如果通过调整只能使得各行中 cl 感兴趣的摊点数一样多,输出 row;
如果只能使各列中 cl 感兴趣的摊点数一样多,输出 column;
如果均不能满足,输出 impossible。
如果输出的字符串不是 impossible, 接下来输出最小交换次数,与字符串之间用一个空格隔开。
数据范围
1≤N,M≤100000,
0≤T≤min(N∗M,100000)
1≤x≤N,
1≤y≤M
输入样例:
2 3 4
1 3
2 1
2 2
2 3
输出样例:
这道题目其实就是糖果传递的衍生题目吧。
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
int main()
{
int n,m,k;
cin>>n>>m>>k;
int row[n]={0},lov[m]={0};
long long row1=0,lov1=0;
for(int i=0;i<k;i++)
{
int j,l;
cin>>j>>l;
row[j-1]++;
lov[l-1]++;
}
if(k%n==0)
{
int li=k/n;
int bns[n]={0};
for(int i=1;i<n;i++)
bns[i]+=bns[i-1]+row[i]-li;
sort(bns,bns+n);
int mid=(n-1)/2;
for(int i=0;i<n;i++)
{
row1+=fabs(bns[mid]-bns[i]);
}
}
if(k%m==0)
{
int li=k/m;
int bns[m]={0};
for(int i=1;i<m;i++)
bns[i]+=bns[i-1]+lov[i]-li;
sort(bns,bns+m);
int mid=(m-1)/2;
for(int i=0;i<m;i++)
lov1+=fabs(bns[mid]-bns[i]);
}
if(lov1&&row1)cout<<"both "<<lov1+row1<<endl;
else if(lov1)cout<<"column "<<lov1<<endl;
else if(row1)cout<<"row "<<row1<<endl;
else cout<<"impossible"<<endl;
return 0;
}