OJ 1449 最大流

OJ 1449. Maximum flow

题目描述

给定一张源为 1,汇为 n的网络,求 1到 n的最大流。

Input

请从 stdin 读入。
输入第一行为两个正整数 n, m ( 2 ≤ n , m ≤ 200 ) (2 \leq n, m \leq 200) (2n,m200)
接下来 m 行,第 i 行为用空格隔开的整数 u i , v i , c i ( 1 ≤ u i , v i ≤ n , 1 ≤ c i ≤ 200 ) u_i, v_i, c_i (1 \leq u_i, v_i \leq n, 1 \leq c_i \leq 200) ui,vi,ci(1ui,vin,1ci200)表示一条 u i u_i ui v i v_i vi,容量为 c i c_i ci的单向边。
输入可能有重边和自环。

Output

请输出到 stdout 中。
输出一行,包含一个整数,表示最大流的流量。

Sample Input

4 4
1 2 1
2 3 2
1 3 1
3 4 3
2 2
1 2 1
1 2 1
3 1
1 2 1
2 3
1 2 1
1 2 1
2 1 1
7 14
1 2 5
1 3 6
1 4 5
2 3 2
2 5 3
3 2 2
3 4 3
3 5 3
3 6 7
4 6 5
5 6 1
6 5 1
5 7 8
6 7 7

Sample Output

2
2
0
2
14

Constraints

Time Limit: 1s
Memory Limit: 512MB

Solution

 使用 Edmonds-Karp algorithm 通过构造剩余网络来解决。
 时间复杂度为O( ∣ V ∣ ∣ E ∣ 2 |V||E|^2 V∣∣E2), ∣ V ∣ |V| V为图中点数, ∣ E ∣ |E| E为图中边数。

Code

#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;

vector<vector<int>>g;
vector<int> pre;
vector<int> a;
int n, m;

int EK(){
    int flow=0;
    queue<int> q;
    while(true){
        q.push(1);
        a.assign(n+1,0);
        a[1]=1000;//源点流量无穷大
        while(!q.empty()){
            int vex=q.front();
            q.pop();
            for(int i=1;i<n+1;i++){
                if(g[vex][i]>0 && a[i]==0){
                    a[i]=min(a[vex],g[vex][i]);
                    q.push(i);
                    pre[i]=vex;
                }
            }
        }
        if(a[n]==0){
            return flow;
        }
        flow+=a[n];
        for(int i=n;i!=1;i=pre[i]){//更新剩余网络
            g[pre[i]][i]-=a[n];
            g[i][pre[i]]+=a[n];
        }
    }

}

int main()
{
    cin>>n>>m;
    g.assign(n+1,vector<int>(n+1));
    pre.assign(n+1,0);
    int u, v, c;
    for(int i=0;i<m;i++){
        cin>>u>>v>>c;
        g[u][v]+=c;
    }
    cout<<EK();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值