题目
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入: [1, 2, 3, 2, 2, 2, 5, 4, 2]
输出: 2
限制:
1 <= 数组长度 <= 50000
思路
看到题目很容易想到以下两种方法:
- 哈希表统计法: 遍历数组 nums ,用 HashMap 统计各数字的数量,即可找出众数 。此方法时间和空间复杂度均为 O(N) 。
- 数组排序法: 将数组 nums 排序,数组中点的元素一定为众数。
- 这里介绍一种摩尔投票法:Boyer–Moore majority vote algorithm 中文常作多数投票算法、摩尔投票算法等,是一种用来寻找一组元素中占多数元素的常数空间级时间复杂度算法。核心理念为票数正负抵消 。此方法时间和空间复杂度分别为 O(N)和 O(1) 。
算法思路
第一步,初始化候选人们candidates以及候选人的票数。
第二步,扫描arrays:
扫描过程中候选人的替换以及票数增减规则如下:
如果与某个候选人匹配,该候选人票数加1,继续扫描arrays,重新开始匹配。
如果与所有候选人都不匹配,检查候选人票数,如果为0,替换该候选人,不再往下检查。
如果与所有候选人都不匹配,检查候选人票数,如果不为0,继续检查一个候选人。
第三步,扫描结束以后,检查所有候选人的票数是否大于1/(candidates.length + 1)加以验证。如果大于,则候选人成立,不大于则候选人剔除掉。
代码
注意:这里题目保证有众数,因此第三步没有。
public int majorityElement(int[] nums) {
int x = 0, votes = 0;
for(int num : nums){
if(votes == 0) x = num;
votes += num == x ? 1 : -1;
}
return x;
}