- 半群判定:
证明运算满足结合律
证明它是一个半群经过满同态得到的代数系统 - 循环半群:
证明要点:找到生成元 - 子半群:
证明要点:非空、封闭 - 理想:
证明表达式
半群
定义
ps:独异点不是一个点,是一个半群,有单位元的半群
实例
- 对任何一个正整数n,都恰好有一个含n个元素的半群,即模n半群
- 单位元不是半群的固有性质
子半群
定义
证明子半群:
- 非空子集
- 运算封闭:任取a,b属于B,a*b仍属于B
实例
子半群的判别
预备知识
判别
注意点:保证封闭性
子半群的性质
注意事项:
- 一个半群的任意两个子半群的交集不一定是该半群的子半群(不能保证非空)
生成子半群
联系关系的闭包
A要保证非空
理想
对于左理想:S左乘A的结果仍然属于A,对于SXS的左分量来说,A就是理想啊,使用一个子集就可以替代右分量S了
理想一定是子半群
生成的理想
循环半群
同态与同构
证明半群
代数系统满同态保持运算规律
同态合成
商半群
利用这样一个等价关系可以对S进行划分,得到商集 S/Ef,在这个商集上定义一个与S上运算有关的运算,可以对其做成一个商半群