近世代数笔记之半群

文章探讨了半群的性质,包括如何证明一个运算满足结合律从而构成半群,以及如何通过满同态得到循环半群。重点讨论了子半群的定义与判别,强调了封闭性和非空性的关键。此外,还涉及了生成元子半群、理想的概念,特别是循环半群的特性以及同态在保持运算规律中的作用,最后提到了商半群作为对原始半群的一种抽象和简化。
摘要由CSDN通过智能技术生成

半群部分的知识点

  1. 半群判定:
    证明运算满足结合律
    证明它是一个半群经过满同态得到的代数系统
  2. 循环半群:
    证明要点:找到生成元
  3. 子半群:
    证明要点:非空、封闭
  4. 理想:
    证明表达式

半群

定义

半群的定义
交换半群的定义
有限半群与无限半群
幺半群
ps:独异点不是一个点,是一个半群,有单位元的半群

实例

模n同余类

  1. 对任何一个正整数n,都恰好有一个含n个元素的半群,即模n半群
  2. 单位元不是半群的固有性质

子半群

定义

子半群的定义
证明子半群:

  1. 非空子集
  2. 运算封闭:任取a,b属于B,a*b仍属于B

实例

循环子半群
在这里插入图片描述

子半群的判别

预备知识

定义运算

判别

判定定理
注意点:保证封闭性

子半群的性质

注意事项:

  1. 一个半群的任意两个子半群的交集不一定是该半群的子半群(不能保证非空)子半群的交集

生成子半群

定义
判定
联系关系的闭包
A要保证非空

理想

定义
对于左理想:S左乘A的结果仍然属于A,对于SXS的左分量来说,A就是理想啊,使用一个子集就可以替代右分量S了
理想一定是子半群

生成的理想

生成的理想定义
证明要点

循环半群

定义
关于生成元
举例
生成元的性质
生成元的性质2

同态与同构

相关定义

证明半群

性质
代数系统满同态保持运算规律

同态合成

在这里插入图片描述

商半群

定义等价关系
利用这样一个等价关系可以对S进行划分,得到商集 S/Ef,在这个商集上定义一个与S上运算有关的运算,可以对其做成一个商半群
商半群
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值