图算法之Dijkstra算法详细解读(附带Java代码解读)

Dijkstra 算法详解

Dijkstra 算法用于计算加权图中从源节点到所有其他节点的最短路径。算法的步骤和原理可以分解如下:

1. 数据结构
  • 图的表示:可以使用邻接矩阵或邻接表来表示图。邻接表通常更节省空间,尤其是在稀疏图中。
  • 距离数组:一个数组 dist,其中 dist[i] 表示从起点到节点 i 的最短距离。
  • 优先队列:使用优先队列(通常用最小堆实现)来高效地获取当前距离最小的节点。
2. 初始化
  • 将起点的距离设为 0,其他所有节点的距离设为 ∞(无穷大)。
  • 将起点加入优先队列。
3. 迭代过程
  • 当优先队列不为空时:
    • 从队列中取出距离最小的节点 u
    • 对于每个与 u 相邻的节点 v,检查通过 u 到达 v 的路径是否更短。
    • 如果更短,则更新 dist[v],并将 v 加入优先队列。
4. 结束条件
  • 当所有节点的最短路径都被确定,或者优先队列为空时,算法结束。

Java 代码实现

下面是 Dijkstra 算法的 Java 实现:

import java.util.*;

public class DijkstraAlgorithm {

    // 节点类
    static class Node implements Comparable<Node> {
        int vertex; // 节点编号
        int weight; // 从起点到该节点的距离

        Node(int vertex, int weight) {
            this.vertex = vertex;
            this.weight = weight;
        }

        @Override
        public int compareTo(Node other) {
            return Integer.compare(this.weight, other.weight);
        }
    }

    // Dijkstra 算法实现
    public static int[] dijkstra(int[][] graph, int start) {
        int numVertices = graph.length; // 图的顶点数量
        int[] dist = new int[numVertices]; // 距离数组
        boolean[] visited = new boolean[numVertices]; // 访问标记数组
        PriorityQueue<Node> minHeap = new PriorityQueue<>(); // 优先队列

        // 初始化距离数组
        Arrays.fill(dist, Integer.MAX_VALUE);
        dist[start] = 0; // 起点到自身的距离为 0
        minHeap.add(new Node(start, 0)); // 将起点加入优先队列

        while (!minHeap.isEmpty()) {
            Node currentNode = minHeap.poll(); // 取出距离最小的节点
            int currentVertex = currentNode.vertex;

            // 如果当前节点已经访问过,则跳过
            if (visited[currentVertex]) {
                continue;
            }
            visited[currentVertex] = true; // 标记为已访问

            // 遍历邻接节点
            for (int neighbor = 0; neighbor < numVertices; neighbor++) {
                if (graph[currentVertex][neighbor] != 0 && !visited[neighbor]) {
                    int newDist = dist[currentVertex] + graph[currentVertex][neighbor];
                    // 如果新路径更短,则更新距离
                    if (newDist < dist[neighbor]) {
                        dist[neighbor] = newDist;
                        minHeap.add(new Node(neighbor, newDist)); // 将更新的节点加入优先队列
                    }
                }
            }
        }

        return dist; // 返回从起点到各个节点的最短距离
    }

    public static void main(String[] args) {
        // 示例图的邻接矩阵表示
        int[][] graph = {
                {0, 7, 9, 0, 0, 14},
                {7, 0, 10, 15, 0, 0},
                {9, 10, 0, 11, 0, 2},
                {0, 15, 11, 0, 6, 0},
                {0, 0, 0, 6, 0, 9},
                {14, 0, 2, 0, 9, 0}
        };

        int startVertex = 0; // 起点
        int[] distances = dijkstra(graph, startVertex);

        System.out.println("从起点到各个节点的最短距离:");
        for (int i = 0; i < distances.length; i++) {
            System.out.println("到节点 " + i + " 的距离: " + distances[i]);
        }
    }
}

代码解读

  1. Node 类

    • 定义了一个 Node 类,用于表示图中的节点及其与起点的距离。
    • 实现了 Comparable 接口,以便可以将节点添加到优先队列中,按距离进行排序。
  2. dijkstra 方法

    • 输入:邻接矩阵 graph 和起点 start
    • 输出:返回从起点到各个节点的最短距离数组 dist
    • dist 数组初始化为 ∞,并将起点的距离设为 0。
    • 使用优先队列 minHeap 存储待处理的节点。
  3. 主要逻辑

    • 从优先队列中提取当前距离最小的节点 currentNode
    • 如果该节点已经被访问,直接跳过。
    • 遍历与当前节点相邻的节点,更新距离,如果发现更短的路径,就更新距离并将该节点加入优先队列。
  4. main 方法

    • 创建了一个图的邻接矩阵表示。
    • 调用 dijkstra 方法并输出结果。

复杂度分析

  • 时间复杂度
    • 使用优先队列时,Dijkstra 算法的时间复杂度为 O((V+E)log⁡V)O((V + E) \log V)O((V+E)logV),其中 VVV 是顶点数,EEE 是边数。
  • 空间复杂度
    • 主要取决于存储图的结构和距离数组,空间复杂度为 O(V)O(V)O(V)。

结论

Dijkstra 算法是一个高效且易于实现的算法,广泛应用于路径搜索问题。在实际应用中,合理选择数据结构可以显著提升算法的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值