C语言实现n皇后问题(附带源码)

项目介绍:N皇后问题

N皇后问题是一个经典的回溯算法问题,目标是在一个 N×N 的棋盘上摆放 N 个皇后,使得它们彼此之间不在同一行、同一列或同一斜线上。这个问题的核心是寻找所有可能的皇后摆放方案,满足这些约束条件。

实现思路:

  1. 定义棋盘:使用一个一维数组 board[] 来表示棋盘,其中 board[i] 表示第 i 行皇后所在的列位置。
  2. 回溯法:通过回溯算法递归地尝试放置每一行的皇后。对于每一行的皇后,尝试放置在每一列,判断该位置是否安全(即不与已放置的皇后发生冲突)。
  3. 冲突判断:通过检查列、主对角线和副对角线来确保没有皇后互相攻击。
  4. 输出结果:输出所有符合条件的解决方案。

代码结构:

  • is_safe函数:用于检查当前位置是否安全。
  • n_queens函数:回溯算法的核心部分,递归地放置皇后。
  • print_solution函数:输出当前的棋盘布局。
  • main函数:接收用户输入,并调用回溯函数进行求解。

示例代码:

#include <stdio.h>
#include <stdbool.h>

#define MAX_N 20  // 最大支持的棋盘大小

// 判断当前位置是否安全
bool is_safe(int board[], int row, int col) {
    for (int i = 0; i < row; i++) {
        // 检查列是否有皇后
        if (board[i] == col || 
            board[i] - i == col - row || // 检查主对角线
            board[i] + i == col + row) { // 检查副对角线
            return false;
        }
    }
    return true;
}

// 回溯法解N皇后问题
void n_queens(int board[], int row, int n) {
    if (row == n) {  // 所有皇后都已经摆放完毕
        print_solution(board, n);
        return;
    }
    
    for (int col = 0; col < n; col++) {
        if (is_safe(board, row, col)) {
            board[row] = col;  // 放置皇后
            n_queens(board, row + 1, n);  // 尝试放置下一行的皇后
        }
    }
}

// 打印当前棋盘的布局
void print_solution(int board[], int n) {
    static int solution_count = 1;
    printf("方案 %d:\n", solution_count++);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (board[i] == j) {
                printf("Q ");  // Q代表皇后
            } else {
                printf(". ");  // .代表空位置
            }
        }
        printf("\n");
    }
    printf("\n");
}

int main() {
    int n;
    printf("请输入N皇后问题的大小N: ");
    scanf("%d", &n);

    if (n < 1 || n > MAX_N) {
        printf("N的值应当在1到%d之间。\n", MAX_N);
        return 1;
    }

    int board[n];  // 用一维数组表示棋盘,board[i]为第i行皇后的列号
    n_queens(board, 0, n);  // 从第0行开始放置皇后

    return 0;
}

代码解释:

  1. is_safe函数

    • 该函数检查当前行列(row, col)放置皇后是否安全。安全的判断条件为:
      • 当前列是否已有皇后(即 board[i] == col)。
      • 当前主对角线是否已有皇后(即 board[i] - i == col - row)。
      • 当前副对角线是否已有皇后(即 board[i] + i == col + row)。 如果有冲突,返回false,否则返回true
  2. n_queens函数

    • 该函数实现了回溯算法。通过递归的方式逐行放置皇后,尝试将皇后放置在当前行的每一列,遇到合法位置就继续放置下一行的皇后。递归到最后一行时,表示找到一个解,调用print_solution打印当前的棋盘布局。
  3. print_solution函数

    • 该函数用于打印当前棋盘的布局。棋盘的每一行用一维数组board[i]来表示,board[i]记录了第i行皇后所在的列,输出时在相应的位置打印Q,其他位置打印.
  4. main函数

    • 用户输入N皇后的大小(即棋盘的大小),然后调用回溯算法来解决问题。如果N的值不在合理范围内(1至20之间),程序会提示错误。

示例运行:

请输入N皇后问题的大小N: 4
方案 1:
. Q . .
. . . Q
Q . . .
. . Q .

方案 2:
. . Q .
Q . . .
. . . Q
. Q . .

总结:

该程序使用回溯算法解决N皇后问题。通过一维数组表示棋盘,回溯算法逐行放置皇后,检查每一位置是否安全。每找到一个解,便输出棋盘的布局。该实现适用于小规模的N皇后问题,对于较大规模的N,性能会受到影响。

求解n皇后问题是经典的回溯算法问题,它要在一个n×n的棋盘上放置n个皇后,保证任意两个皇后不在同一行、同一列或对角线上。以下是解决这个问题的基本步骤: 1. 定义一个数组或二维数组`board`来表示棋盘,其中`board[i][j] = 0`表示该位置空,`board[i][j] = 1`表示有皇后。 2. 使用递归函数`solveNQueens(n, row)`,从第一行开始遍历,尝试将皇后放在当前行的每个位置。 3. 对于每个位置,检查左右上方是否有其他行的皇后。如果存在,则回溯到上一行,尝试下一个位置;如果不存在,说明当前位置可行,放置皇后并继续处理下一行。 4. 当所有皇后都放置完成后,打印或返回棋盘布局。 5. 回溯过程:当在某一行找不到合适的位置时,需要撤销前一步的操作,即把这一行的某个皇后移至其他空位,然后尝试下一行,直到找到解决方案或无法再前进为止。 下面是简化版的C语言代码示例: ```c #include <stdio.h> #define N 8 int board[N][N]; void solveNQueens(int n, int row) { if (row == n) { // 所有皇后放置完毕 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%d ", board[i][j]); } printf("\n"); } return; } for (int col = 0; col < n; col++) { // 检查列、左斜线和右斜线是否冲突 if (!checkConflict(row, col)) { board[row][col] = 1; solveNQueens(n, row + 1); board[row][col] = 0; // 回溯,移除皇后 } } } // 辅助函数,检查当前位置是否与其他皇后冲突 int checkConflict(int row, int col) { for (int i = 0; i < row; i++) { if (board[i][col] || board[row - i][col] || board[row][col - i] || board[row][col + i]) { return 1; } } return 0; } int main() { solveNQueens(N, 0); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值