项目介绍:N皇后问题
N皇后问题是一个经典的回溯算法问题,目标是在一个 N×N 的棋盘上摆放 N 个皇后,使得它们彼此之间不在同一行、同一列或同一斜线上。这个问题的核心是寻找所有可能的皇后摆放方案,满足这些约束条件。
实现思路:
- 定义棋盘:使用一个一维数组
board[]
来表示棋盘,其中board[i]
表示第i
行皇后所在的列位置。 - 回溯法:通过回溯算法递归地尝试放置每一行的皇后。对于每一行的皇后,尝试放置在每一列,判断该位置是否安全(即不与已放置的皇后发生冲突)。
- 冲突判断:通过检查列、主对角线和副对角线来确保没有皇后互相攻击。
- 输出结果:输出所有符合条件的解决方案。
代码结构:
is_safe
函数:用于检查当前位置是否安全。n_queens
函数:回溯算法的核心部分,递归地放置皇后。print_solution
函数:输出当前的棋盘布局。main
函数:接收用户输入,并调用回溯函数进行求解。
示例代码:
#include <stdio.h>
#include <stdbool.h>
#define MAX_N 20 // 最大支持的棋盘大小
// 判断当前位置是否安全
bool is_safe(int board[], int row, int col) {
for (int i = 0; i < row; i++) {
// 检查列是否有皇后
if (board[i] == col ||
board[i] - i == col - row || // 检查主对角线
board[i] + i == col + row) { // 检查副对角线
return false;
}
}
return true;
}
// 回溯法解N皇后问题
void n_queens(int board[], int row, int n) {
if (row == n) { // 所有皇后都已经摆放完毕
print_solution(board, n);
return;
}
for (int col = 0; col < n; col++) {
if (is_safe(board, row, col)) {
board[row] = col; // 放置皇后
n_queens(board, row + 1, n); // 尝试放置下一行的皇后
}
}
}
// 打印当前棋盘的布局
void print_solution(int board[], int n) {
static int solution_count = 1;
printf("方案 %d:\n", solution_count++);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (board[i] == j) {
printf("Q "); // Q代表皇后
} else {
printf(". "); // .代表空位置
}
}
printf("\n");
}
printf("\n");
}
int main() {
int n;
printf("请输入N皇后问题的大小N: ");
scanf("%d", &n);
if (n < 1 || n > MAX_N) {
printf("N的值应当在1到%d之间。\n", MAX_N);
return 1;
}
int board[n]; // 用一维数组表示棋盘,board[i]为第i行皇后的列号
n_queens(board, 0, n); // 从第0行开始放置皇后
return 0;
}
代码解释:
-
is_safe
函数:- 该函数检查当前行列(
row
,col
)放置皇后是否安全。安全的判断条件为:- 当前列是否已有皇后(即
board[i] == col
)。 - 当前主对角线是否已有皇后(即
board[i] - i == col - row
)。 - 当前副对角线是否已有皇后(即
board[i] + i == col + row
)。 如果有冲突,返回false
,否则返回true
。
- 当前列是否已有皇后(即
- 该函数检查当前行列(
-
n_queens
函数:- 该函数实现了回溯算法。通过递归的方式逐行放置皇后,尝试将皇后放置在当前行的每一列,遇到合法位置就继续放置下一行的皇后。递归到最后一行时,表示找到一个解,调用
print_solution
打印当前的棋盘布局。
- 该函数实现了回溯算法。通过递归的方式逐行放置皇后,尝试将皇后放置在当前行的每一列,遇到合法位置就继续放置下一行的皇后。递归到最后一行时,表示找到一个解,调用
-
print_solution
函数:- 该函数用于打印当前棋盘的布局。棋盘的每一行用一维数组
board[i]
来表示,board[i]
记录了第i行皇后所在的列,输出时在相应的位置打印Q
,其他位置打印.
。
- 该函数用于打印当前棋盘的布局。棋盘的每一行用一维数组
-
main
函数:- 用户输入N皇后的大小(即棋盘的大小),然后调用回溯算法来解决问题。如果N的值不在合理范围内(1至20之间),程序会提示错误。
示例运行:
请输入N皇后问题的大小N: 4
方案 1:
. Q . .
. . . Q
Q . . .
. . Q .
方案 2:
. . Q .
Q . . .
. . . Q
. Q . .
总结:
该程序使用回溯算法解决N皇后问题。通过一维数组表示棋盘,回溯算法逐行放置皇后,检查每一位置是否安全。每找到一个解,便输出棋盘的布局。该实现适用于小规模的N皇后问题,对于较大规模的N,性能会受到影响。