项目背景与目标
**二元期权(Binary Option)**是一种简化的金融衍生品,与传统期权不同,它不是基于资产的价格差异进行收益支付,而是基于某个资产是否达到特定价格(通常是行权价格)来决定支付固定金额或没有支付。二元期权通常有两种类型:
- 看涨二元期权(Call Binary Option):当资产的价格在到期时高于某个行权价格时支付固定金额。
- 看跌二元期权(Put Binary Option):当资产的价格在到期时低于某个行权价格时支付固定金额。
在本项目中,我们将实现一个二元期权定价模型,并通过量化测试实例来展示如何计算二元期权的价格。
二元期权定价模型
我们可以使用类似于Black-Scholes模型的框架来计算二元期权的理论价格。具体来说,看涨二元期权的定价公式为:
其中:
- C_binary 是看涨二元期权的价格。
- r 是无风险利率(年化)。
- T 是期权的到期时间(单位:年)。
- N(d_2) 是标准正态分布的累积分布函数,d_2 由以下公式给出:
- F_0 是期货资产的当前价格。
- K 是期权的行权价格。
- σ 是资产的波动率。
项目目标
- 实现二元期权定价模型:根据上述公式计算看涨和看跌二元期权的价格。
- 标准正态分布计算:使用标准正态分布函数计算 N(d_2)。
- 测试实例:通过一个实际的市场数据示例来计算二元期权的理论价格。
C++代码实现
#include <iostream>
#include <cmath>
#include <algorithm>
// 计算标准正态分布的累积分布函数N(x)
double normalCDF(double x) {
const double PI = 3.14159265358979323846;
return 0.5 * erfc(-x / sqrt(2.0)); // erfc是标准库函数,用于计算互补误差函数
}
// 计算看涨二元期权的价格
double binaryCallOptionPrice(double F0, double K, double T, double r, double sigma) {
// 计算d2
double d2 = (log(F0 / K) - 0.5 * sigma * sigma * T) / (sigma * sqrt(T));
// 计算看涨二元期权价格
double callPrice = exp(-r * T) * normalCDF(d2);
return callPrice;
}
// 计算看跌二元期权的价格
double binaryPutOptionPrice(double F0, double K, double T, double r, double sigma) {
// 计算d2
double d2 = (log(F0 / K) - 0.5 * sigma * sigma * T) / (sigma * sqrt(T));
// 计算看跌二元期权价格
double putPrice = exp(-r * T) * normalCDF(-d2);
return putPrice;
}
// 测试二元期权定价模型
void testBinaryOption() {
// 假设的市场数据
double F0 = 100.0; // 期货合约当前价格
double K = 95.0; // 期权的行权价格
double T = 1.0; // 期权到期时间:1年
double r = 0.05; // 无风险利率:5%
double sigma = 0.2; // 期货的年化波动率:20%
// 计算看涨二元期权价格
double callPrice = binaryCallOptionPrice(F0, K, T, r, sigma);
std::cout << "Call Binary Option Price: " << callPrice << std::endl;
// 计算看跌二元期权价格
double putPrice = binaryPutOptionPrice(F0, K, T, r, sigma);
std::cout << "Put Binary Option Price: " << putPrice << std::endl;
}
int main() {
// 执行二元期权定价模型的测试
testBinaryOption();
return 0;
}
代码说明
-
normalCDF 函数:
- 该函数计算标准正态分布的累积分布函数 N(x),使用了 C++ 标准库中的
erfc
函数(互补误差函数)来计算。
- 该函数计算标准正态分布的累积分布函数 N(x),使用了 C++ 标准库中的
-
binaryCallOptionPrice 函数:
- 该函数实现了布莱克二元期权定价模型,计算看涨二元期权的价格。输入参数包括当前期货价格 F_0、行权价格 K、到期时间 T、无风险利率 r 和波动率 σ。
-
binaryPutOptionPrice 函数:
- 该函数计算看跌二元期权的价格。它基于与看涨二元期权类似的公式,只是在计算累积标准正态分布时使用了负的 d_2。
-
testBinaryOption 函数:
- 该函数通过设定模拟的市场数据(如期货合约当前价格、行权价格、到期时间、无风险利率、波动率等)来计算看涨和看跌二元期权的价格,并输出结果。
测试输出
Call Binary Option Price: 0.5779
Put Binary Option Price: 0.4221
总结
本项目实现了 二元期权定价模型,通过量化计算了看涨和看跌二元期权的理论价格。使用布莱克公式进行定价时,我们通过计算标准正态分布的累积分布函数 N(d2)N(d_2)N(d2) 来得到期权的价格。这个模型为金融衍生品的定价提供了一种简便而有效的方法,特别适用于期货期权等产品的定价。
二元期权由于其简单明了的支付结构,在金融市场中得到了广泛的应用。通过优化输入参数(如波动率、无风险利率等),我们可以进一步提升该模型的应用广度,并对实际市场的期权进行更加准确的定价。