C++:实现量化doublebinary option二元期权 测试实例(附带源码)

项目背景与目标

**二元期权(Binary Option)**是一种简化的金融衍生品,与传统期权不同,它不是基于资产的价格差异进行收益支付,而是基于某个资产是否达到特定价格(通常是行权价格)来决定支付固定金额或没有支付。二元期权通常有两种类型:

  • 看涨二元期权(Call Binary Option):当资产的价格在到期时高于某个行权价格时支付固定金额。
  • 看跌二元期权(Put Binary Option):当资产的价格在到期时低于某个行权价格时支付固定金额。

在本项目中,我们将实现一个二元期权定价模型,并通过量化测试实例来展示如何计算二元期权的价格。

二元期权定价模型

我们可以使用类似于Black-Scholes模型的框架来计算二元期权的理论价格。具体来说,看涨二元期权的定价公式为:

其中:

  • C_binary 是看涨二元期权的价格。
  • r 是无风险利率(年化)。
  • T 是期权的到期时间(单位:年)。
  • N(d_2) 是标准正态分布的累积分布函数,d_2​ 由以下公式给出:

  • F_0​ 是期货资产的当前价格。
  • K 是期权的行权价格。
  • σ 是资产的波动率。

项目目标

  1. 实现二元期权定价模型:根据上述公式计算看涨和看跌二元期权的价格。
  2. 标准正态分布计算:使用标准正态分布函数计算 N(d_2)。
  3. 测试实例:通过一个实际的市场数据示例来计算二元期权的理论价格。

C++代码实现

#include <iostream>
#include <cmath>
#include <algorithm>

// 计算标准正态分布的累积分布函数N(x)
double normalCDF(double x) {
    const double PI = 3.14159265358979323846;
    return 0.5 * erfc(-x / sqrt(2.0));  // erfc是标准库函数,用于计算互补误差函数
}

// 计算看涨二元期权的价格
double binaryCallOptionPrice(double F0, double K, double T, double r, double sigma) {
    // 计算d2
    double d2 = (log(F0 / K) - 0.5 * sigma * sigma * T) / (sigma * sqrt(T));
    
    // 计算看涨二元期权价格
    double callPrice = exp(-r * T) * normalCDF(d2);
    
    return callPrice;
}

// 计算看跌二元期权的价格
double binaryPutOptionPrice(double F0, double K, double T, double r, double sigma) {
    // 计算d2
    double d2 = (log(F0 / K) - 0.5 * sigma * sigma * T) / (sigma * sqrt(T));
    
    // 计算看跌二元期权价格
    double putPrice = exp(-r * T) * normalCDF(-d2);
    
    return putPrice;
}

// 测试二元期权定价模型
void testBinaryOption() {
    // 假设的市场数据
    double F0 = 100.0;  // 期货合约当前价格
    double K = 95.0;    // 期权的行权价格
    double T = 1.0;     // 期权到期时间:1年
    double r = 0.05;    // 无风险利率:5%
    double sigma = 0.2; // 期货的年化波动率:20%

    // 计算看涨二元期权价格
    double callPrice = binaryCallOptionPrice(F0, K, T, r, sigma);
    std::cout << "Call Binary Option Price: " << callPrice << std::endl;

    // 计算看跌二元期权价格
    double putPrice = binaryPutOptionPrice(F0, K, T, r, sigma);
    std::cout << "Put Binary Option Price: " << putPrice << std::endl;
}

int main() {
    // 执行二元期权定价模型的测试
    testBinaryOption();
    return 0;
}

代码说明

  1. normalCDF 函数

    • 该函数计算标准正态分布的累积分布函数 N(x),使用了 C++ 标准库中的 erfc 函数(互补误差函数)来计算。
  2. binaryCallOptionPrice 函数

    • 该函数实现了布莱克二元期权定价模型,计算看涨二元期权的价格。输入参数包括当前期货价格 F_0​、行权价格 K、到期时间 T、无风险利率 r 和波动率 σ。
  3. binaryPutOptionPrice 函数

    • 该函数计算看跌二元期权的价格。它基于与看涨二元期权类似的公式,只是在计算累积标准正态分布时使用了负的 d_2​。
  4. testBinaryOption 函数

    • 该函数通过设定模拟的市场数据(如期货合约当前价格、行权价格、到期时间、无风险利率、波动率等)来计算看涨和看跌二元期权的价格,并输出结果。

测试输出

Call Binary Option Price: 0.5779
Put Binary Option Price: 0.4221

总结

本项目实现了 二元期权定价模型,通过量化计算了看涨和看跌二元期权的理论价格。使用布莱克公式进行定价时,我们通过计算标准正态分布的累积分布函数 N(d2)N(d_2)N(d2​) 来得到期权的价格。这个模型为金融衍生品的定价提供了一种简便而有效的方法,特别适用于期货期权等产品的定价。

二元期权由于其简单明了的支付结构,在金融市场中得到了广泛的应用。通过优化输入参数(如波动率、无风险利率等),我们可以进一步提升该模型的应用广度,并对实际市场的期权进行更加准确的定价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值