基于BoxMOT的目标检测与跟踪全流程详解
一、技术背景与应用场景
目标检测与跟踪是计算机视觉领域的核心技术,广泛应用于智能监控、自动驾驶、运动分析等场景。BoxMOT集成了多种先进的跟踪算法(如ByteTrack、DeepOCSort等),配合YOLOv8等检测模型,可以实现高精度的实时目标跟踪。本教程将带您从零开始搭建完整的实验环境,并通过实际案例演示完整流程。
二、环境搭建
2.1 Docker容器配置
docker run --gpus all --shm-size=32g -it \
-e NVIDIA_VISIBLE_DEVICES=all --privileged --net=host \
-v $PWD:/home -w /home --name boxmot nvcr.io/nvidia/pytorch:24.03-py3 /bin/bash
为什么要使用Docker?
- 保证环境一致性:避免不同系统环境导致的依赖冲突
- GPU加速支持:
--gpus all
参数启用NVIDIA GPU加速 - 共享内存设置:
--shm-size=32g
确保大内存需求应用稳定运行 - 目录映射:
-v $PWD:/home
将主机当前目录挂载到容器内
2.2 目录结构规划
mkdir -p /home/{
workspace,third_party,models,videos,datasets}
目录结构说明:
workspace
: 存放核心代码库third_party
: 第三方依赖组件models
: 预训练模型存储videos
: 测试视频素材datasets
: 训练/验证数据集
三、关键资源准备
3.1 数据集选择
cd /home/datasets
wget -O MOT20.zip https://motchallenge.net/data/MOT20.zip
wget -O MOT17.zip https://motchallenge.net/data/MOT17.zip
unzip MOT17.zip
MOT数据集是目标跟踪领域权威基准数据集:
- 包含密集人群、复杂场景
- 提供精确的标注信息
- 支持多目标跟踪评估
3.2 模型选择
cd /home/models
wget https://huggingface.co/spaces/xfys/yolov5_tracking/resolve/main/weights/osnet_x0_25_msmt17.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8n.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8x.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8l.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8m.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8s.pt
3.3 视频素材准备
cd /home/videos
wget https://media.roboflow.com/supervision/video-examples/vehicles.mp4
wget https://media.roboflow.com/supervision/video-examples/milk-bottling-plant.mp4
wget https://media.roboflow.com/supervision/video-examples/vehicles-2.mp4
wget https://media.roboflow.com/supervision/video-examples/grocery-store.mp4
wget https://media.roboflow.com/supervision/video-examples/subway.mp4
wget https://media.roboflow.com/supervision/video-examples/market-square.mp4
wget https://media.roboflow.com/supervision/video-examples/people-walking.mp4
wget https://media.roboflow.com/supervision/video-examples/beach-1.mp4
wget https://media.roboflow.com/supervision/video-examples/basketball-1.mp4
wget https://media.roboflow.com/supervision/video-examples/skiing.mp4
提供多种场景测试视频:
- 交通监控(vehicles.mp4)
- 工业检测(milk-bottling-plant.mp4)
- 人群分析(people-walking.mp4)
四、核心组件安装
4.1 基础组件安装
apt update
apt install ffmpeg -y
apt install git -y
apt-get install ffmpeg libavcodec-dev libavformat-dev libswscale-dev -y
python -m pip install --upgrade pip
pip install loguru
pip install gdown
pip install ftfy
pip install lap
pip install filterpy
pip install numpy==1.24.4
pip install scikit-build
pip install gitpython
4.2 OpenCV定制编译
cd /home/third_party
git clone --recursive https://github.com/opencv/opencv-python.git
cd opencv-python/
git checkout 72
git submodule update --recursive
export ENABLE_CONTRIB=1
export WITH_FFMPEG=ON
python setup.py bdist_wheel
pip uninstall opencv opencv-contrib-python -y
rm /usr/local/lib/python3.10/dist-packages/cv2 -rf
pip install dist/*
确认
OpenCV
支持FFMPEGcd /home python3 -c "import cv2;print(cv2.getBuildInformation())"
4.3 下载BoxMOT框架,配置环境变量
cd /home/workspace
git clone https://github.com/JonathonLuiten/TrackEval.git
cd TrackEval
python3 setup.py install
cd /home/workspace
git clone --recursive https://github.com/mikel-brostrom/boxmot.git
cd boxmot
git checkout v12.0.9
mkdir tracking/val_utils -p
cp /home/workspace/TrackEval/scripts tracking/val_utils/ -rf
export PYTHONPATH=$PWD:$PYTHONPATH
cd /home/workspace
git clone https://github.com/mikel-brostrom/ultralytics.git
cd ultralytics/
git checkout 8e17ff56a9db8933a1962b88e05547dd2cce9c48
export PYTHONPATH=$PWD:$PYTHONPATH
框架主要功能模块:
- 目标检测(YOLO系列)
- 特征提取(ReID模型)
- 数据关联(Kalman滤波、匈牙利算法)
- 轨迹管理(轨迹插值、状态预测)
五、目标跟踪实战演示
cd /home/workspace
cat> main.py<<-'EOF'
import argparse
from functools import partial
from pathlib import Path
from PIL import Image
import cv2
import torch
from boxmot import TRACKERS
from boxmot.tracker_zoo import create_tracker
from boxmot.utils import ROOT, WEIGHTS, TRACKER_CONFIGS
from boxmot.utils.checks import