基于BoxMOT的目标检测与跟踪全流程详解

一、技术背景与应用场景

目标检测与跟踪是计算机视觉领域的核心技术,广泛应用于智能监控、自动驾驶、运动分析等场景。BoxMOT集成了多种先进的跟踪算法(如ByteTrack、DeepOCSort等),配合YOLOv8等检测模型,可以实现高精度的实时目标跟踪。本教程将带您从零开始搭建完整的实验环境,并通过实际案例演示完整流程。


二、环境搭建

2.1 Docker容器配置

docker run --gpus all --shm-size=32g -it \
	-e NVIDIA_VISIBLE_DEVICES=all --privileged --net=host \
    -v $PWD:/home -w /home --name boxmot nvcr.io/nvidia/pytorch:24.03-py3 /bin/bash

为什么要使用Docker?

  • 保证环境一致性:避免不同系统环境导致的依赖冲突
  • GPU加速支持:--gpus all参数启用NVIDIA GPU加速
  • 共享内存设置:--shm-size=32g确保大内存需求应用稳定运行
  • 目录映射:-v $PWD:/home将主机当前目录挂载到容器内

2.2 目录结构规划

mkdir -p /home/{
   workspace,third_party,models,videos,datasets}

目录结构说明:

  • workspace: 存放核心代码库
  • third_party: 第三方依赖组件
  • models: 预训练模型存储
  • videos: 测试视频素材
  • datasets: 训练/验证数据集

三、关键资源准备

3.1 数据集选择

cd /home/datasets
wget -O MOT20.zip https://motchallenge.net/data/MOT20.zip
wget -O MOT17.zip https://motchallenge.net/data/MOT17.zip
unzip MOT17.zip

MOT数据集是目标跟踪领域权威基准数据集:

  • 包含密集人群、复杂场景
  • 提供精确的标注信息
  • 支持多目标跟踪评估

3.2 模型选择

cd /home/models
wget https://huggingface.co/spaces/xfys/yolov5_tracking/resolve/main/weights/osnet_x0_25_msmt17.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8n.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8x.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8l.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8m.pt
wget https://huggingface.co/Ultralytics/YOLOv8/resolve/main/yolov8s.pt

3.3 视频素材准备

cd /home/videos
wget https://media.roboflow.com/supervision/video-examples/vehicles.mp4
wget https://media.roboflow.com/supervision/video-examples/milk-bottling-plant.mp4
wget https://media.roboflow.com/supervision/video-examples/vehicles-2.mp4
wget https://media.roboflow.com/supervision/video-examples/grocery-store.mp4
wget https://media.roboflow.com/supervision/video-examples/subway.mp4
wget https://media.roboflow.com/supervision/video-examples/market-square.mp4
wget https://media.roboflow.com/supervision/video-examples/people-walking.mp4
wget https://media.roboflow.com/supervision/video-examples/beach-1.mp4
wget https://media.roboflow.com/supervision/video-examples/basketball-1.mp4
wget https://media.roboflow.com/supervision/video-examples/skiing.mp4

提供多种场景测试视频:

  • 交通监控(vehicles.mp4)
  • 工业检测(milk-bottling-plant.mp4)
  • 人群分析(people-walking.mp4)

四、核心组件安装

4.1 基础组件安装

apt update
apt install ffmpeg -y
apt install git -y
apt-get install ffmpeg libavcodec-dev libavformat-dev libswscale-dev -y
python -m pip install --upgrade pip
pip install loguru
pip install gdown
pip install ftfy
pip install lap
pip install filterpy
pip install numpy==1.24.4
pip install scikit-build
pip install gitpython

4.2 OpenCV定制编译

cd /home/third_party
git clone --recursive https://github.com/opencv/opencv-python.git
cd opencv-python/
git checkout 72
git submodule update --recursive
export ENABLE_CONTRIB=1
export WITH_FFMPEG=ON
python setup.py bdist_wheel
pip uninstall opencv opencv-contrib-python -y
rm /usr/local/lib/python3.10/dist-packages/cv2 -rf
pip install dist/*

确认OpenCV支持FFMPEG

cd /home
python3 -c "import cv2;print(cv2.getBuildInformation())"

4.3 下载BoxMOT框架,配置环境变量

cd /home/workspace
git clone https://github.com/JonathonLuiten/TrackEval.git
cd TrackEval
python3 setup.py install
cd /home/workspace
git clone --recursive https://github.com/mikel-brostrom/boxmot.git
cd boxmot
git checkout v12.0.9
mkdir tracking/val_utils -p
cp /home/workspace/TrackEval/scripts tracking/val_utils/ -rf
export PYTHONPATH=$PWD:$PYTHONPATH
cd /home/workspace
git clone https://github.com/mikel-brostrom/ultralytics.git
cd ultralytics/
git checkout 8e17ff56a9db8933a1962b88e05547dd2cce9c48
export PYTHONPATH=$PWD:$PYTHONPATH

框架主要功能模块:

  1. 目标检测(YOLO系列)
  2. 特征提取(ReID模型)
  3. 数据关联(Kalman滤波、匈牙利算法)
  4. 轨迹管理(轨迹插值、状态预测)

五、目标跟踪实战演示

cd /home/workspace
cat> main.py<<-'EOF'
import argparse
from functools import partial
from pathlib import Path
from PIL import Image
import cv2
import torch
from boxmot import TRACKERS
from boxmot.tracker_zoo import create_tracker
from boxmot.utils import ROOT, WEIGHTS, TRACKER_CONFIGS
from boxmot.utils.checks import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hi20240217

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值