Description
黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。
任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。
所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)
例如,对三位数207:
第1次重排求差得:720 - 27 = 693;
第2次重排求差得:963 - 369 = 594;
第3次重排求差得:954 - 459 = 495;
以后会停留在495这一黑洞数。
如果三位数的3个数字全相同,一次转换后即为0。
任意输入一个三位数,编程给出重排求差的过程。
Input
一个三位数(三位数字不全相同)。
Output
按照以下格式输出重排求差的过程:
序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。
Sample Input 1
123
Sample Output 1
1: 321 - 123 = 198 2: 981 - 189 = 792 3: 972 - 279 = 693 4: 963 - 369 = 594 5: 954 - 459 = 495
#include <stdio.h>
#include<math.h>
#include<string.h>
int black(int n)
{
int a[3],max=0,min=0,t=0;
a[0] = n % 10;//个位
a[1] = (n / 10) % 10;//十位
a[2] = n / 100;//百位
for (int i = 0; i < 2; i++)//利用冒泡排序,从大到小排序
{
for (int j = 0; j < 2 - i; j++)
{
if (a[j] < a[j + 1])
{
int temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
max = a[0] * 100 + a[1] * 10 + a[2];
min = a[2] * 100 + a[1] * 10 + a[0];
t = max - min;
printf(": %d - %d = %d", max, min, t);
return t;
}
int main()
{
int n,sum=0,count=0;
scanf("%d", &n);
while ((n != 495&&n!=0)||count==0)//495也要循环一次,而且三位相同对的数字只循环一次
{
if (count++)putchar('\n');//输出序号从第二个前面换行
printf("%d", count);
n = black(n);
}
return 0;
}