A. Ian Visits Mary
分析
从(0,0)出发,最终到达(a,b),最多走两次,每次走的时候,起点终点的连线上不能出现整数坐标(除开起点和终点),如果有a,b中有一个为1的话走一步即可,否则先走到(1,b-1),再走到(a,b)。
代码实现
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 100010,mod = 1e9+7;
int n,m;
void solve()
{
cin >> n >> m;
if(n == 1 || m == 1)
{
cout << 1 << '\n';
cout << n << ' ' << m << '\n';
return ;
}
cout << 2 << '\n';
cout << 1 << ' ' << m - 1 << '\n';
cout << n << ' ' << m << '\n';
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int tt;
cin >> tt;
while(tt--)
{
solve();
}
return 0;
}
B. Grid Reconstruction
分析
这题我通过看样例对其猜测,(1,1)和(2,n)一定放最大的2*n,2*n-1,接下来如何使最小值最大。只能向右和下移动的话,那么其实方格的数字实际会进行的操作就是如下(当n=4时
+ | - | + | - |
- | + | - | + |
贪一下,小的数放在要减去的位置,大的数放在加上的位置,证明我不太会。
代码实现
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 100010,mod = 1e9+7;
int n,m;
int a[3][N];
void solve()
{
int n;
cin >> n;
int x = 1, y = 2, xx = 2 * n - 3, yy = 2 * n - 2;
a[1][1] = n * 2, a[2][n] = n * 2 - 1;
for(int i = 2;i <= n; i++)
{
if(i % 2)
{
a[1][i] = xx;
a[2][i - 1] = yy;
xx -= 2, yy -= 2;
}
else
{
a[1][i] = x;
a[2][i - 1] = y;
x += 2, y += 2;
}
}
for(int i = 1;i <= 2; i++)
{
for(int j = 1;j <= n; j++)
cout << a[i][j] << ' ';
cout << '\n';
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int tt;
cin >> tt;
while(tt--)
{
solve();
}
return 0;
}
C. Ian and Array Sorting
这题搞了我几个小时,感觉有时候就是想不到,要么就想到一点点。
分析
a1-1,a2-1,a2+1,a3+1这里可以看出a1-1,a3+1,那么奇偶性相同的可以互相传递,我们可以只用看最后两位数,去进行比较a[n-1] <= a[n-2]输出YES,当n为奇数时要思考一下,尽管a[n-1]>a[n],但可以通过值传递,a[1]=-a[n-1]。例如利用我们找到的特性转变[0,0,0,4,1],还可以变[-4,0,0,0,1]。
代码实现
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 100010,mod = 1e9+7;
int n,m;
void solve()
{
int n;
cin >> n;
vector<ll> a(n + 10);
for(int i = 1;i <= n; i++) cin >> a[i];
if(n % 2)
{
cout << "YES\n";
return ;
}
ll sum = 0;
for(int i = 1;i <= n; i++)
if(i & 1) sum -= a[i];
else sum += a[i];
if(sum >= 0) cout << "YES\n";
else cout << "NO\n";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
int tt;
cin >> tt;
while(tt--)
{
solve();
}
return 0;
}