【论文笔记】TGNet: Learning to Rank Nodes in Temporal Graphs

发表:CIKM 18

原文:链接

作者机构:华盛顿州立大学/NEC/PNNL

摘要

本文提出了一个基于深度学习框架的网络TGNet,可以实现对异构时序图进行结点排序。本文的创新点在于可以动态评估时序和结构对结点重要程度的影响。

模型概况

对结点排序
  • 时序图
    G i = ( V i , E i ) — — 图 在 t i 时 刻 的 点 集 V i 和 边 集 E i V = ∪ i ∈ [ 1 , s ] V i — — 时 序 图 G 的 所 有 结 点 G_i=(V_i,E_i)——图在t_i时刻的点集V_i和边集E_i\\ V=∪_{i\in [1,s]}V_i——时序图G的所有结点 Gi=(Vi,Ei)tiViEiV=i[1,s]ViG

  • 排序函数
    定 义 训 练 数 据 G ′ = ( G , D ) , D 为 点 对 { < u , v > ∣ u ∈ V , v ∈ V } 定义训练数据G'=(G,D),D为点对\{<u,v>|u\in V,v \in V\} G=(G,D),D{ <u,v>uV,vV}
    其中每一个<u,v>代表u比v排序更高

  • 问题描述

    给定一个训练数据G’,一个排序函数空间M,和一个测量排序损失的损失函数J。问题是找到一个最优函数g*∈M,使得排序错误J(g*,G)最小。

    这个问题和我们常见的在静态图中排序不一样,这里要求模型可以结合both结构信息与时序信息来动态变化。

TGNet模型Overview

TGNet 模型

模型总体结构如下:

在这里插入图片描述

TGNet包含4个部分:

  1. 初始化层,将输入特征向量映射到隐藏空间状态

    当v∈Vi,而Gi是v第一次出现的快照时,初始化层会对v的结点特征来一次特征选择:
    h v ( i , 0 ) = t a n h ( W i n T ⋅ x v + b i n ) h_v^{(i,0)}=tanh(W^T_{in}·x_v+b_{in}) hv(i,0)=tanh(WinTxv+bin)
    其中,xvv的输入特征,tanh(·)是一个双曲正切函数,可以将输入特征向量映射为一个d_h维的特征空间,而h项是v的初始隐藏状态,Wb是模型的参数。

    最开始,v的隐藏状态在时序网络中编码围绕v的上下文信息。隐藏状态会在时序和结构传输中被多个层更新。

  2. 结构传输层,将同一快照邻居结点的信息交换

    结构邻域是上下文特征的来源,并一定程度上决定结点等级。这个层的目的就是在Gi中为每个点收集邻居信息。TGNet通过迭代执行局部信息传输(L次)来完成这一过程。对于任意Vi中的vk,又如下公式:
    h v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值