1.第一题
1.1题目
思路:
NowCoder每天要给很多人发邮件。有一天他发现发错了邮件,把发给A的邮件发给了B,把发给B的邮件发给了A。于是他就思考,要给n个人发邮件,在每个人仅收到1封邮件的情况下,有多少种情况是所有人都收到了错误的邮件?
即没有人收到属于自己的邮件
输入描述:
输入包含多组数据,每组数据包含一个正整数n(2≤n≤20)
输出描述:
对应每一组数据,输出一个正整数,表示无人收到自己邮件的种数
1.2思路
- 本题属于错排问题
- 利用d[n] = (n-1)*(d[n-1]+d[n-2])解决
1.3解题
import java.util.*;
public class Main {
public static void main(String[] args) {
long[] array = new long[21];
array[0] = 0;
array[1] = 0;
array[2] = 1;
for(int i = 3;i < 21;i++){
array[i] = (i - 1) * (array[i-1] + array[i-2]);
}
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
System.out.println(array[n]);
}
}
}
2.第二题
2.1题目
思路:
广场上站着一支队伍,她们是来自全国各地的扭秧歌代表队,现在有她们的身高数据,请你帮忙找出身高依次递增的子序列。 例如队伍的身高数据是(1、7、3、5、9、4、8),其中依次递增的子序列有(1、7),(1、3、5、9),(1、3、4、8)等,其中最长的长度为4
输入描述:
输入包含多组数据,每组数据第一行包含一个正整数n(1≤n≤1000)
紧接着第二行包含n个正整数m(1≤n≤10000),代表队伍中每位队员的身高
输出描述:
对应每一组数据,输出最长递增子序列的长度
2.2思路
- 本题为动态规划问题
- 问题:求n个元素的最大上升子序列
- 状态:以array[i]结尾的最大上升子序列
- 状态方程:dp[i] = Math.max(dp[i], dp[j]+1)
- 状态初始值:全部为1
- 返回值:返回状态中的最大值
2.3解题
import java.util.*;
public class Main {
// 求最长公共子序列
public static int LIS(int[] array,int n){
//保存以array[i]结尾的最长上升子序列元素的个数
int[] dp = new int[n];
int ret = 1;//保存最长的上升子序列元素的个数
for(int i = 0;i < n;i++){
// 状态初始值都为1
dp[i] = 1;
// 将array[i]与array[0]~array[i-1]比较,如果array[i] > array[j]: dp[i] = Math.max(dp[i], dp[j]+1)
for(int j = 0;j < i;j++){
if(array[i] > array[j]){
dp[i] = Math.max(dp[i],dp[j] + 1);
}
}
ret = Math.max(ret,dp[i]);
}
return ret;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
int[] array = new int[n];
for(int i = 0;i < n;i++){
array[i] = sc.nextInt();
}
System.out.println(LIS(array,n));
}
}
}