day40—编程题

1.第一题

1.1题目

思路:
NowCoder每天要给很多人发邮件。有一天他发现发错了邮件,把发给A的邮件发给了B,把发给B的邮件发给了A。于是他就思考,要给n个人发邮件,在每个人仅收到1封邮件的情况下,有多少种情况是所有人都收到了错误的邮件?
即没有人收到属于自己的邮件
输入描述:
输入包含多组数据,每组数据包含一个正整数n(2≤n≤20)
输出描述:
对应每一组数据,输出一个正整数,表示无人收到自己邮件的种数

1.2思路

  1. 本题属于错排问题
  2. 利用d[n] = (n-1)*(d[n-1]+d[n-2])解决

1.3解题

import java.util.*;
public class Main {
    public static void main(String[] args) {
        long[] array = new long[21];
        array[0] = 0;
        array[1] = 0;
        array[2] = 1;
        for(int i = 3;i < 21;i++){
            array[i] = (i - 1) * (array[i-1] + array[i-2]);
        }
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int n = sc.nextInt();
            System.out.println(array[n]);
        }
    }
}

2.第二题

2.1题目

思路:
广场上站着一支队伍,她们是来自全国各地的扭秧歌代表队,现在有她们的身高数据,请你帮忙找出身高依次递增的子序列。 例如队伍的身高数据是(1、7、3、5、9、4、8),其中依次递增的子序列有(1、7),(1、3、5、9),(1、3、4、8)等,其中最长的长度为4
输入描述:
输入包含多组数据,每组数据第一行包含一个正整数n(1≤n≤1000)
紧接着第二行包含n个正整数m(1≤n≤10000),代表队伍中每位队员的身高
输出描述:
对应每一组数据,输出最长递增子序列的长度

2.2思路

  1. 本题为动态规划问题
  2. 问题:求n个元素的最大上升子序列
  3. 状态:以array[i]结尾的最大上升子序列
  4. 状态方程:dp[i] = Math.max(dp[i], dp[j]+1)
  5. 状态初始值:全部为1
  6. 返回值:返回状态中的最大值

2.3解题

import java.util.*;
public class Main {
    // 求最长公共子序列
    public static int LIS(int[] array,int n){
        //保存以array[i]结尾的最长上升子序列元素的个数
        int[] dp = new int[n];
        int ret = 1;//保存最长的上升子序列元素的个数
        for(int i = 0;i < n;i++){
            // 状态初始值都为1
            dp[i] = 1;
            // 将array[i]与array[0]~array[i-1]比较,如果array[i] > array[j]: dp[i] = Math.max(dp[i], dp[j]+1)
            for(int j = 0;j < i;j++){
                if(array[i] > array[j]){
                    dp[i] = Math.max(dp[i],dp[j] + 1);
                }
            }
            ret = Math.max(ret,dp[i]);
        }
        return ret;
    }
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int n = sc.nextInt();
            int[] array = new int[n];
            for(int i = 0;i < n;i++){
                array[i] = sc.nextInt();
            }
            System.out.println(LIS(array,n));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值