文章目录
abstract
现状
生成对抗网络(GAN)在跨领域图像翻译方面取得了巨大进展。
事实上,图像到图像的翻译任务经常遇到两个领域的结构差异,例如在未配对的中国书法数据集上的翻译。
存在问题
然而,现有模型只能转换颜色和纹理特征并保持结构不变(例如:在苹果到橙子任务中,这些模型只转换苹果的颜色,但保持苹果的形状)。
提出算法
为了解决跨结构图像翻译问题,如中国书法的跨结构翻译问题,本文提出了一种新的生成对抗网络模型CS-GAN。在CSGAN中,使用分布变换、重参数化技巧 和 采样特征将从域S获得的特征映射转换为域T,然后通过特征拼接生成域T的图像。
所提出的CS-GAN在三组中国书法数据上进行了验证,这些数据具有来自三位著名书法家颜真卿、赵孟頫和欧阳询的结构差异。广泛的实验结果表明,所提出的CS-GAN成功地转换了不同结构的中国书法数据,并优于最先进的模型。