汉字风格迁移篇----CS-GAN:中国书法翻译的跨结构生成对抗网络

32 篇文章 89 订阅 ¥29.90 ¥99.00
本文提出了一种名为CS-GAN的生成对抗网络模型,专门解决中国书法的跨结构图像翻译问题。现有的模型只能转换颜色和纹理,而CS-GAN通过分布变换、重参数化技巧和采样特征,成功地转换了结构差异,实现了不同书法家风格的转换。在三组具有结构差异的书法数据上,CS-GAN的实验结果优于其他先进模型,展示了其在处理结构差异任务上的优势。
摘要由CSDN通过智能技术生成

abstract

现状

生成对抗网络(GAN)在跨领域图像翻译方面取得了巨大进展。
事实上,图像到图像的翻译任务经常遇到两个领域的结构差异,例如在未配对的中国书法数据集上的翻译。

存在问题

然而,现有模型只能转换颜色和纹理特征并保持结构不变(例如:在苹果到橙子任务中,这些模型只转换苹果的颜色,但保持苹果的形状)。

提出算法

为了解决跨结构图像翻译问题,如中国书法的跨结构翻译问题,本文提出了一种新的生成对抗网络模型CS-GAN。在CSGAN中,使用分布变换重参数化技巧采样特征将从域S获得的特征映射转换为域T,然后通过特征拼接生成域T的图像
所提出的CS-GAN在三组中国书法数据上进行了验证,这些数据具有来自三位著名书法家颜真卿、赵孟頫和欧阳询的结构差异。广泛的实验结果表明,所提出的CS-GAN成功地转换了不同结构的中国书法数据,并优于最先进的模型。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啊菜来了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值