快速排序基于分治思想(不稳定):看稳不稳定取决于两个相同的数在排序后该没改变位置
时间复杂度:平均时间复杂度为o(nlogn),最坏n方
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。
1.确定分界点,这里取中间值。
2.划分区间,使分界点左边的值都小于分界点,右边的值都大于分界点。
3,递归处理左右两边。(对左右两边在进行以1,2)操作,直至排序完成。
这里用到了双指针,一个指针指向数组的最左侧,一个指针指向数组的最右侧,左指针先动,当指针指向的数小于分界点,指针向右移动,若大于或等于分界点则停止,此时右指针向左动,当指针指向的值小于等于分界点则停止,若此时i<j交换两个指针指向的值,然后左右指针分别进一格。
#include <iostream>
using namespace std;
const int N=1e5+10;
int q[N];
void quick(int q[],int l,int r){
if(l>=r)return ;
int x=q[(l+r)>>1],i=l-1,j=r+1;
while(i<j){
do i++;while(q[i]<x);
do j--;while(q[j]>x);
if(i<j)swap(q[i],q[j]);
}
quick(q,l,j);
quick(q,j+1,r);
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++)scanf("%d",&q[i]);
quick(q,0,n-1);
for(int i=0;i<n;i++)printf("%d ",q[i]);
return 0;
}
这是从小到大排序,若要从大到小排序,反过来就行了,划分区间的时候分界点左边存比分节点大的值,右边存小的值。
void quick(int q[],int l,int r){
if(l>=r)return ;
int x=q[(l+r)>>1],i=l-1,j=r+1;
while(i<j){
do i++;while(q[i]>x);
do j--;while(q[j]<x);
if(i<j)swap(q[i],q[j]);
}
quick(q,l,j);
quick(q,j+1,r);
}
归并排序同样基于分治思想。(稳定)
时间复杂度:一定为o(nlogn)
1.确定分界点:中间值。
2.递归将分界点左边排序,递归将分界点右边排序。
3.将两个排完序的序列归并。
归并,是将两个排完序的序列进行比较,从两个序列的最小值开始,若那个小就存入到一个辅助数组进去,一直到左边或右边有一个排完了,然后就把没排完的全都放到辅助数组里面去。
#include <iostream>
using namespace std;
const int N=1e5+10;
int q[N],tmp[N];
void quick(int q[],int l,int r){
if(l>=r)return ;
int mid=(l+r)>>1;
quick(q,l,mid);
quick(q,mid+1,r);
int k=0,i=l,j=mid+1;
while(i<=mid&&j<=r){
if(q[i]<=q[j])tmp[k++]=q[i++];
else tmp[k++]=q[j++];
}
while(i<=mid)tmp[k++]=q[i++];
while(j<=r)tmp[k++]=q[j++];
for(int i=l,j=0;i<=r;j++,i++)q[i]=tmp[j];
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++)cin>>q[i];
quick(q,0,n-1);
for(int i=0;i<n;i++)cout<<q[i]<<" ";
return 0;
}
冒泡排序,就是外层循环轮数,比如说五个数,就循环5-1轮,内层循环区间,比如说,数组的小标为0到n-1,那么内层循环就是j=0,比如到j<=n-1-i;,前提比较的时候是s[j]与s[j+1]比较。