简单说说大数据技术yarn是什么

YARN是ApacheHadoop的一个核心组件,作为集群资源管理器,负责高效地分配和调度计算资源。它将资源管理和任务调度分离,包含ResourceManager和NodeManager两个主要组件。YARN允许多种计算框架如MapReduce、Spark、Flink在同一集群中并行运行,提高了资源利用率和系统灵活性。
摘要由CSDN通过智能技术生成

当我们处理大量数据时,我们需要一个系统来管理和分配资源,确保任务能够高效地执行。这就像是在一家餐厅里,有许多不同的服务员和厨师,每个人都需要合理分配资源,以确保顾客的需求得到满足。

YARN就是这样的一个系统,它是一种大数据技术,帮助我们管理和分配计算资源。它就像是一个餐厅的总管,负责协调和安排各个服务员和厨师的工作。YARN知道集群中有哪些计算资源可用,然后根据不同任务的需求,将资源分配给相应的任务。这样,每个任务都能得到所需的资源,顺利地完成工作。

此外,YARN还能够同时运行不同的计算框架,就好像在餐厅里,我们不仅提供主菜,还可以同时制作甜点、沙拉等各种菜品。这样,我们可以使用最适合特定任务的计算框架,提高整个系统的效率和灵活性。

通过YARN,我们能够更好地利用集群中的资源,提高数据处理的速度和质量。它就像是一个智能的调度器,确保每个任务都得到所需的资源,就像餐厅里的总管一样,让每个顾客都能满意地享用美食。

YARN(Yet Another Resource Negotiator)是一个开源的大数据技术,它是Apache Hadoop的核心组件之一。YARN的主要作用是作为Hadoop集群的资源管理器,用于管理和调度集群中的各种计算任务。

在传统的Hadoop架构中,所有的计算任务都由MapReduce引擎执行。但是随着大数据应用的复杂性增加,仅仅依靠MapReduce来处理各种不同类型的任务已经不够灵活和高效了。这就引入了YARN,它重新设计了Hadoop的资源管理和调度框架,使得Hadoop集群能够同时运行多个不同类型的计算框架,如MapReduce、Apache Spark、Apache Flink等。

YARN的核心思想是将资源管理和任务调度分离开来。它包含两个主要组件:ResourceManager和NodeManager。ResourceManager负责整个集群的资源管理,它接收应用程序的资源请求,并根据可用资源和调度策略来分配资源。NodeManager运行在每个集群节点上,负责监控该节点上的资源使用情况,并与ResourceManager通信,执行分配给该节点的任务。

通过YARN,不同类型的计算框架可以在同一个Hadoop集群中并行运行,共享集群资源。这样可以提高资源利用率和集群的整体性能。同时,YARN还支持动态添加和删除计算框架,使得集群能够根据实际需求进行扩展和调整。

总之,YARN是一个用于资源管理和任务调度的大数据技术,它扩展了Hadoop集群的功能,使得集群能够同时运行多个不同类型的计算框架,提高了大数据处理的灵活性和效率。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值