深度学习
- 学习参考资料为:b站我是土堆的PyTorch深度学习快速入门以及李沐动手学深度学习
PyTorch学习
-
链接:https://www.bilibili.com/video/BV1hE411t7RN/
-
先安装ANACONDA,去官网下载然后安装,记住安装的地方在哪
-
在ANACONDA里面新建环境的时候,遇见了这个问题:
-
具体在csdn找到了解决办法,通过删注册表解决了这个问题:
-
按Win+R快捷键,输入regedit,打开注册表编辑器找到HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Internet Settings分支,把它下面以 Proxy 打头的键值对(如ProxyEnable,ProxyOverride,ProxyServer等)全部删除。(但是发现会重复出现这些问题)
-
还有可能的问题是:用conda安装的时候很慢,安装不下来,这时候可以用pip安装,而且要对应python版本会特别快,比如我是python3.8安装的cuda的11.8版本,用手机热点会很快(亲测)
-
还有个问题是在新建的环境里安装jupyter会出问题,然后执行了
conda install nb_conda_kernels
conda install jupyter notebook
编辑器选择
-
对比:
- python文件的块是所有行的代码
- 优点:通用,传播方便,适用于大型项目
- 缺点:需要从头运行
- python控制台
- 优点:显示每个变量的属性
- 缺点:不利于代码阅读与修改
- jupyter
- 优点:利于代码阅读及修改
- 缺点:环境需要配置
- python文件的块是所有行的代码
-
jupyter中,ctrl+enter是执行当前块,shift+enter是执行完当前块后生成下一个块
深度学习
-
这里是跟着李沐的动手学深度学习,b站指路:https://space.bilibili.com/1567748478/channel/seriesdetail?sid=358497
-
这个版本的是在linux上安装,然后我是在windows上安装,上面pytorch学习讲到了我安装时遇见的一些问题和解决方法。
-
直接从第四集开始记录,后面的代码都是在jupyter运行
04 数据操作与数据预处理
数据操作实现
#注意:这里每个#下面或者被紧贴着的上下两个#包裹着的都是直接可以在jupyter的代码块里运行的。
#首先导入torch
import torch
#张量表示一个数值组成的数组,这个数组可能有多个维度
x = torch.arange(12)
x
#可以通过张量属性的shape来访问张良的形状和张量中元素的总数
x.shape
x.numel()
#要改变一个张量的形状而不改变元素数量和元素值,可以使用reshape函数
x = x.reshape(3,4)
x
#比如上面就会将x = torch.arange(12)这里的一维数组变为三行四列的二维数组
#使用全0,全1,其他常量或者从特定分布中随机采样的数字,下面是深度2,长度3,宽度4的三维(两个三行四列的二维数组)
torch.zeros((2,3,4))
torch.ones((2,3,4))
#通过提供包含数值的python列表(或嵌套列表)来为所需张量中的每个元素赋予确定值
torch.tensor([[2,1,4,3],[2,1,4,3],[2,1,4,3],[2,1,4,3]])
#常见的标准算数运算符(+,-,*,/和**)都可以被升级为按元素运算
x = torch.tensor([1.0,2,4,8])
y = torch.tensor([2,2,2,2])
x+y,x-y,x*y,x/y,x**y
#也可以把多个张量连接在一起
x = torch.arange(12,dtype=torch.float32).reshape((3,4))
y = t