数据结构与算法(二)

本文详细介绍了算法的基本概念,强调了正确性、可读性和健壮性作为好算法的重要特性。同时,阐述了时间复杂度和空间复杂度的概念,用于衡量算法效率。大O记法被用来表示算法的时间复杂度,而空间复杂度则关注算法所需内存。通过理解这些概念,可以更好地优化和选择合适的算法。
摘要由CSDN通过智能技术生成

什么是算法?

算法的特性

好算法的特性 

1)正确性。算法应该能够正确的解决求解问题。

2)可读性。算法应具有良好的可读性,以帮助人们理解。

3)健壮性。输入非法数据时,算法能适当的作出反应或进行处理,而不会产生莫名其妙的输出结果。

4)时间效率高和存储量低。

 时间复杂度

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O( )来体现算法时间复杂度的记法,我们称之为大O记法。一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。

常见的时间复杂度

 推导大O阶方法

 空间复杂度

算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作:S(n)=0(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

通常,我们都使用“时间复杂度”来指运行时间的需求,使用“空间复杂度”指空间需求。当不用限定词地使用“复杂度”时,通常都是指时间复杂度。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有个金丝熊叫老许

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值