对头条文章浏览数据的关联分析

对头条文章浏览数据的关联分析

数据链接:

所用到的数据:

 

目的:什么类型的文章对什么类型的文章会有促进作用

解题思路:找出强关联规则的项集,观察提升度是否有促进作用

解题步骤:倒着推导一遍为了得到强关联促进关系,我们需要知道提升度,前件,后件,所以需要利用apriori算法,ok

STEP1 观察表结构,转化为双重表结构,方便使用apyori算法

#数据预处理

#双重列表数据结构

articles = []

#step1.将字符串数据转成列表;step2.在列表添加到空列表中

for i in df["文章类型"]:

    article = i.split(",")

    articles.append(article)

print(articles)

 

STEP2 下载apyori模块,使用apyori模块里的apriori()函数产生关联规则

Pip install apyori

#设置强关联规则

from apyori import apriori



#得到强关联规则的关系记录

rules = apriori(articles, min_support= 0.1, min_confidence= 0.6)

 

STEP3 遍历出规则中的关系记录

for rule in rules:

    print(rule)

 

STEP4 提取支持度,前件,后件,置信度,提升度

for rule in rules:

    support = rule.support

    for i in rule.ordered_statistics:

        head_set = i.items_base

        tail_set = i.items_add

        confidence = i.confidence

        lift = i.lift

        print(head_set, tail_set, confidence, lift)

 

完整代码:

import pandas as pd

df = pd.read_csv(r"C:\用户浏览数据.csv")

#数据预处理
#双重列表数据结构
articles = []
#step1.将字符串数据转成列表;step2.在列表添加到空列表中
for i in df["文章类型"]:
    article = i.split(",")
    articles.append(article)

#设置强关联规则
from apyori import apriori

#得到强关联规则的关系记录
rules = apriori(articles, min_support= 0.1, min_confidence= 0.6)

#用来存储DataFrame数据
extract_result = []

for rule in rules:
    #提取支持度
    support = round(rule.support, 3)
    #提取前后件,置信度、提升度
    for i in rule.ordered_statistics:
        #把前件和后件的格式转化为列表
        head_set = list(i.items_base)
        tail_set = list(i.items_add)
        #筛选掉前件为空的数据
        if head_set == []:
            continue
        #将前件和后件拼接为关联字符串
        related_category = str(head_set) + "→" +str(tail_set)
        #对置信度和提升度四舍五入保留三位小数
        confidence = round(i.confidence, 3)
        lift = round(i.lift, 3)

        extract_result.append([related_category, support, confidence, lift])

rule_data = pd.DataFrame(extract_result, columns= ["关联规则", "支持度", "置信度", "提升度"])

#促进关系
promoted_rules = rule_data[rule_data["提升度"] > 1]
#抑制关系
restricted_rules = rule_data[rule_data["提升度"] < 1]

#绘制簇形柱状图,同时观察支持度和置信度的情况
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = "FangSong"

promoted_rules.plot.bar("关联规则", ["支持度", "置信度"], rot = 0)

plt.title("促进关系的强关联规则")
plt.show()







结果展示:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值