- 博客(6)
- 收藏
- 关注
原创 如何部署ProtDETR环境,如何解决错误,并成功运行
其他安装包可以先尝试运行一个代码,错误提示会告诉我们缺少什么包,根据错误提示去下载就行,我展示一下我安装的所有包,这些包不用一个一个的下载,很多都是连带下载的。在首次运行代码时会自动下载esm模型,该模型有7.3GB,需要很久,耐心等待,或者直接参考4中的错误提示II,手动下载。暂时我就遇到这两个错误,有其他错误解决不了的可以发在评论区一起分析一下。将这两个文件上传到服务器,可以创建一个名为esm的文件夹,将二者放入。由于我们下载了作者提供的训练好的模型,所以不用再训练了。修改代码:将main函数中的。
2025-06-11 17:28:04
658
原创 DERT论文
因为用的是自回归的方法,第2层的输出是第3层的输入。100个object query是有100个向量,这100个向量和通过encoder提取的特征输入Decoder,这100个向量相当于查询,这个框是鸭子吗?object query要先进行self-Attention,可以这样理解,这100个查询先开个会,明确自己要关注的地方,比如这个框是鸭子吗?object query :encoder输出的特征就是K V ,每对分别代表图中一个框的位置,这100个查询并行去问这些K V,我应该关注你吗?
2025-06-08 15:05:35
205
原创 论文Interpretable Enzyme Function Prediction via Residue-Level Detection(ProtDETR)
从酶序列中预测带有酶学委员会编号(EC编号)的多种功能具有重要意义,但由于其稀疏的多标签分类特性(即每种酶通常仅与6000多种可能的EC编号中的少数标签相关联),这一任务仍面临挑战。现有机器学习算法通常为每种酶学习固定的全局表征来预测所有功能,因而缺乏可解释性,且可能掩盖某些功能特异性局部残基片段的关键信息。本研究提出一种基于注意力机制的框架ProtDETR(蛋白质检测变换器),将酶功能预测转化为检测问题。该框架通过一组可学习的功能查询,自适应地从残基级特征序列中提取不同局部表征以预测不同EC编号。
2025-05-28 20:25:43
1006
原创 (避坑)linux服务器下载neo4j,并且用自己电脑如何访问(远程计算机访问)
首先告诉大家一个小妙招,在此过程中不管遇到什么难题,都可以问gpt,国内的可以用千问,kimi,百川等等。我用的deepseek简直不要太好用!!!
2024-12-19 14:00:00
1833
3
原创 微软Graphrag+ollama实现本地部署 使用qwen2.5模型
为什么不直接跑微软的Graphrag源码,而要ollama部署到本地呢?答案也是非常简单,直接跑这个项目的话,需要openai的apikey,花tokens,很烧money!!!而通过ollama部署到本地,就可以轻松免费玩Graphrag。
2024-12-18 19:29:22
1968
1
原创 (超详细教程)没有sudo权限,在服务器安装ollama,下载qwen2模型,python代码测试
本文详细介绍了ollama的下载安装,如何在命令行下载,如何在本地下载上传服务器。以及环境变量的部署,以及如何拉取模型,python代码测试,都有详细的介绍。
2024-12-15 14:19:38
5058
8
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人