
因果关系和因果模型简要综述
如果存在从A到B的路径,即使路径中包含其他节点,A也被称为B的“祖先”,B是A的“后代”。A和B是高度相关,但是A和B并不存在因果关系,A和B都是C引发,在类似这种情况下,C为A和B的共同原因。其关注的重点是变量之间的因果关系,即一个变量是如何影响另一个变量的。DAG与联合概率密度之间的连接强度比较弱(即,联合概率密度无法体现出DAG中的因果关系),但是通过干预,可以体现出概率中的因果关系。其本质为:要确定效果E和潜在原因C之间的因果关系,必须至少比较两个概率(一个与C的存在有关,一个与C的缺席有关)。





