阿涛e
码龄3年
关注
提问 私信
  • 博客:5,111
    5,111
    总访问量
  • 3
    原创
  • 143,629
    排名
  • 79
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2021-09-18
博客简介:

m0_62064655的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    28
    当月
    0
个人成就
  • 获得142次点赞
  • 内容获得0次评论
  • 获得107次收藏
创作历程
  • 3篇
    2024年
成就勋章
TA的专栏
  • 因果模型
    1篇
  • 论文解读
    2篇
兴趣领域 设置
  • 人工智能
    数据挖掘机器学习深度学习神经网络自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

因果关系和因果模型简要综述

如果存在从A到B的路径,即使路径中包含其他节点,A也被称为B的“祖先”,B是A的“后代”。A和B是高度相关,但是A和B并不存在因果关系,A和B都是C引发,在类似这种情况下,C为A和B的共同原因。其关注的重点是变量之间的因果关系,即一个变量是如何影响另一个变量的。DAG与联合概率密度之间的连接强度比较弱(即,联合概率密度无法体现出DAG中的因果关系),但是通过干预,可以体现出概率中的因果关系。其本质为:要确定效果E和潜在原因C之间的因果关系,必须至少比较两个概率(一个与C的存在有关,一个与C的缺席有关)。
原创
发布博客 2024.07.05 ·
2126 阅读 ·
45 点赞 ·
0 评论 ·
32 收藏

论文解读2:Causal Incremental Graph Convolution for Recommender System Retraining(因果增量图卷积在推荐系统再训练的应用)

为了实现在推荐系统中GCN模型高效的重新训练,其关键在于从邻域聚合中分离旧图,同时保留长期偏好信号并刷新非活动节点。该文章使用因果增量图卷积方法,即,在LightGCN模型中增加图增量卷积(IGC)和碰撞效应蒸馏(CED)。证明了IGC和CED的有效性和合理性。未来可以在IGC中应用不同的模型参数更新技术,以及在更多图学习应用中测试IGC和CED。
原创
发布博客 2024.06.27 ·
1648 阅读 ·
45 点赞 ·
0 评论 ·
35 收藏

论文解读:Toward Causal Representation Learning(向因果表示学习)

讨论了因果模型和统计模型等不同层次的模型,这些模型都建立在一系列涉及建模和数据收集的假设上面。说明了因果推断的理论基础知识,并强调了独立机制假设及相关概念(如不变性)为因果学习提供了有力的偏差,以及如何从观察数据和干预数据中学习因果关系。讨论了如何将因果框架应用于机器学习领域,如半监督学习、领域泛化以及对抗鲁棒性。未来研究领域将包括:①学习大规模的非线性因果关系:1、在什么条件下可以学习非线性因果关系;2、哪些训练框架最有利于利用机器学习方法进行扩展;
原创
发布博客 2024.06.27 ·
1328 阅读 ·
52 点赞 ·
0 评论 ·
40 收藏