自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 las格式文件在cloud compare上不显示

因为viewpoint 配准问题导致读取的点云存在旋转问题。于是通过将pcd格式点云保存为las格式,然后再将las格式的点云保存为pcd格式来解决。(参考https://blog.csdn.net/guanxunmeng8928/article/details/112902484)在保存时修改为original scale (le-07, le-07, le-07)后,该文件便可以在cc上正常读取了。发现问题是在保存的时候选择默认的original scale (0,0,0)导致的。

2025-01-27 11:21:03 265

翻译 论文翻译:PointNet++:DeepHierarchicalFeatureLearningonPointSetsinaMetricSpace

此前很少有研究在点集上进行深度学习。PointNet[20]是这一方向的先驱。然而,由于设计原因,PointNet无法捕捉由度量空间点所形成的局部结构,这限制了它识别细粒度模式的能力以及对复杂场景的泛化能力。在这项工作中,我们引入了一个分层神经网络,该网络在输入点集的嵌套分区上递归地应用PointNet。通过度量空间距离,我们的网络能够学习具有递增上下文尺度的局部特征。通过进一步观察,我们发现点集通常是在不同密度的数据上采样的。

2024-10-28 12:06:04 87

翻译 论文翻译:PointNet Deep Learning on Point Sets for 3D Classification and Segmentation

点云是一种重要的几何数据结构。由于其数据结构的不规则,大多数研究人员将此类数据转换为规则结构的3D体素网格或图像集合。但是,这会使数据变得不必要地庞大并导致问题。在本文中,我们设计了一种直接使用点云的新型神经网络,它很好地保持了输入点的排列不变性。我们的网络名为PointNet,为从对象分类、区域分割到场景语义解析的应用程序提供了统一的架构。虽然简单,但PointNet非常高效。从实践上讲,它显示出与最先进的技术相当甚至更好的性能。

2024-10-28 11:49:18 107

原创 A review of point cloud segmentation for understanding 3D indoor scenes全文翻译

A review of point cloud segmentation for understanding 3D indoor scenes摘要点云分割是三维(3D)视觉和智能化中的一项基本任务。它是理解复杂3D场景的关键步骤。随着3D扫描设备的快速发展,点云数据对研究人员来说越来越容易获得。深度学习的最新进展正在推动点云分割研究及应用的进展。本文对用于理解3D室内场景的点云分割的最新进展进行了全面综述。首先,我们介绍了公共点云数据集,这是该领域研究的基础。其次,我们简要回顾了过去基于几何的分

2024-10-08 21:49:37 1175

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除