深度学习入门python考试速成:神经网络之前向传播

本文探讨了神经网络中如何利用矩阵乘法进行内积计算,并介绍了不同层的计算方式,重点强调了输出层选择恰当激活函数的重要性,如回归问题的恒等函数、二元分类的sigmoid函数以及多元分类的softmax函数。
摘要由CSDN通过智能技术生成

矩阵乘法

A B =C\\ A:M*N\\ B:N*P\\ C:M*P

神经网络的内积

\begin{matrix} (x_{1}& x_{2}) & \begin{pmatrix} 1 & 3 & 5\\ 2& 4 & 6 \end{pmatrix} \end{matrix}=\begin{pmatrix} y_{1} & y_{2} & y_{3} \end{pmatrix}\\ \begin{matrix} 1*2 &&&& 2*3 &&&&&1*3 \end{matrix}

XW=Y

W=\begin{pmatrix} 1 & 3&5 \\ 2& 4& 6 \end{pmatrix}

用数学式表示 a_{1}^{(1)}

使用矩阵的乘法运算

Z^{(1)}=h(A^{(1)})\\ Z^{(1)}=\begin{pmatrix} z_{1}^{(1)} &z_{2}^{(1)} & z_{3}^{(1)} \end{pmatrix}

其它层计算类似,图如下

输出层所用的激活函数,要根据求解问题的性质决定。一般地,回 归问题可以使用恒等函数,二元分类问题可以使用sigmoid函数, 多元分类问题可以使用softmax函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北辰星Charih

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值