AI学习模型与应用
文章平均质量分 91
北辰星Charih
学无止境
展开
-
GAN:开启未来科技之门的神奇钥匙
GAN,即生成式对抗网络,是一种深度学习模型,由生成器和判别器组成,通过相互对抗实现学习。生成对抗网络在 2014 年由伊恩・古德费洛等人提出,其设计灵感来源于博弈论中的 “零和游戏”。生成器的任务是接收一个随机噪声向量作为输入,并将其转化为与真实数据相似的样本。例如,生成器可能会将一个服从正态分布的随机噪声转化为一幅逼真的图像。初始阶段,生成器的输出可能非常随机,但随着训练的进行,它会逐渐生成更加逼真的样本。判别器则是一个二分类器,用于评估输入样本的真实性。原创 2024-10-13 20:20:41 · 1045 阅读 · 0 评论 -
生成式专题的第四节课--CycleGAN
CycleGAN(Cycle-Consistent Generative Adversarial Network,循环生成对抗网络)是一种用于无监督图像转换的深度学习模型,即一种用于图像到图像转换任务的生成对抗网络(GAN)的变体,它可以在没有成对训练样本的情况下将一种风格的图像转换成另一种风格。例如,在卫星图像的超分辨率重建任务中,可以使用成对的低分辨率和高分辨率卫星图像进行训练,以提高图像的清晰度和细节。例如,在图像修复任务中,可以准确地填充图像中的缺失部分,使修复后的图像与周围的内容无缝融合。原创 2024-10-12 22:38:18 · 989 阅读 · 0 评论 -
生成式专题的第三节课--cGAN的Pix2Pix
cGAN 是在原始 GAN 的基础上进行改进的一种生成式模型,即在GAN的基础上引入了条件变量,使得生成过程可以受到额外信息控制的一种网络结构。在原始 GAN 中,生成器生成的图像是完全随机的,难以控制其生成的内容。而 cGAN 通过向生成器和判别器的输入层中添加额外的条件信息,实现了对生成内容的控制。这个条件信息可以是生成目标的分类标签、文本描述,也可以是其他模型产生的特征等。传统GAN的生成是基于一个给定的随机噪声生成图像,cGAN的输入包括条件变量和随机噪声。原创 2024-10-11 07:00:00 · 605 阅读 · 0 评论 -
生成式专题的第二节课--DCGAN
DCGAN(Deep Convolutional Generative Adversarial Network,即深度卷积生成对抗网络),于2016年提出,是一种深度学习模型,是生成对抗网络(GAN)的一种变体,是对GAN模型的改进和提高。其创新性在于结合了卷积神经网络(CNN)和生成对抗网络(GAN)的优势,用于生成高质量的图像。DC,即深度卷积(Deep Convolutional),在判别器和生成器中使用卷积和转置卷积层。深度卷积网络近年来发展迅速。原创 2024-10-10 16:20:15 · 791 阅读 · 0 评论 -
生成式专题的第一节课---GAN图像生成
GAN (生成式对抗网络)诞生于 2014 年,由 Ian Goodfellow 提出,是用于生成数据的深度学习模型,创新点是对抗性训练,即生成器与判别器的竞争关系,为图像生成、风格迁移等领域带来革命性影响。原创 2024-10-10 15:00:09 · 1159 阅读 · 0 评论