解读Stata输出的OLS回归结果

本文介绍了Stata软件在回归分析中的应用,包括基础命令如线性回归、非线性回归、离散模型和时间序列模型。重点解析了OLS回归结果,讲解了如何通过SS、df、MS、R-squared、Adjusted R2和Root MSE等指标评估模型,以及如何通过系数、标准误、t值和置信区间判断变量显著性。此外,还提到了三种获得稳健型标准误的方法:同方差、聚类调整和自抽样法。
摘要由CSDN通过智能技术生成

 Stata是一个广泛用于统计分析和数据管理的软件,以下是一些Stata的基础命令:

  1. 输入数据:use + 数据文件路径

  2. 显示数据:browse 或 list 或 describe

  3. 选择数据:keep 或 drop 或 select 或 exclude

  4. 建立变量和赋值:generate 或 replace

  5. 汇总数据:summarize 或 tabulate

  6. 画图:twoway plot 或 histogram

  7. 线性回归分析:regress

  8. 非线性回归分析:nl 或 nlsur

  9. 离散模型(例如logit)分析:logit 或 probit

  10. 时间序列模型分析:arima 或 xtgls

  11. 数据合并:merge

  12. 数据排序:sort

  13. 导出数据:outsheet 或 outreg

  14. 生成OLS回归后的一列拟合值:predict price_fit, xb

  15. 手动计算拟合值:gen y_fits = _b[_cons] + _b[length]*length

  16. 显示残差&#x

Stata中,进行回归分析后,可以使用“reg”命令输出回归结果。具体操作步骤如下: 1. 打开Stata软件,加载数据集。 2. 输入回归命令,例如: reg y x1 x2 x3 其中,y为因变量,x1、x2、x3为自变量。 3. 按下回车键,Stata输出回归结果,包括回归系数、标准误、t值、p值、R-squared等统计指标。 下面是一个示例回归结果: . reg y x1 x2 x3 Source | SS df MS Number of obs = 100 -------------+------------------------------ F( 3, 96) = 106.23 Model | 6994.69887 3 2331.56629 Prob > F = 0.0000 Residual | 2963.45694 96 30.8645126 R-squared = 0.7686 -------------+------------------------------ Adj R-squared = 0.7606 Total | 9958.15581 99 100.576131 Root MSE = 5.5531 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | .7274522 .0875483 8.32 0.000 .5547003 .900204 x2 | .4527171 .1427689 3.17 0.002 .1678026 .7376317 x3 | 1.012289 .065605 15.43 0.000 .8821836 1.142395 _cons | 1.157917 1.778487 0.65 0.515 -2.370002 4.685837 ------------------------------------------------------------------------------ 其中,“y”为因变量, “x1”、“x2”、“x3”为自变量,下方的表格列出了每个自变量的回归系数、标准误、t值、p值和置信区间。最上方的统计指标包括了模型的拟合优度(R-squared)、调整后的拟合优度(Adj R-squared)、残差平方和(Residual)、总平方和(Total)和均方差(Root MSE)等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北辰星Charih

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值