2021-09-23

算法时间复杂度的定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)= 0(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。这样用大写0()来体现算法时间复杂度的记法,我们称之为大0记法。一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法。显然,由此算法时间复杂度的定义可知,我们自三个求和算法的时间复杂度分别为0(1),O(n)0(n^2)。那么如何分析一个算法的时间复杂度呢?即如何推导大0阶呢?我们给大家整理了以下攻略:一用常数1取代运行时间中的所有加法常数。一在修改后的运行次数函数中,只保留最高阶项。一如果最高阶项存在且不是1,则去除与这个项相乘的常数。一得到的最后结果就是大0阶。世界上的东西就是这么简单,老头儿们把它讲复杂,那么它就复杂了,举几个例子:0(8)?这是初学者常常犯的错误,总认为有多少条语句就有多少。分析下,按照我们的概念“T(n)是关于问题规模n的函数”来说。但是跟问题规模的表亲戚都没关系!,所以我们记作0(1)就可以。另外,如果按照攻略来,那就更简单了,攻略第一条就说明了所有加法常数给他个0(1)即可。所以我们很容易总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。分析下,由于当i=0时,内循环执行了n次,当i=1时内循环则执行n-1次…….当i=n-1时,内循环执行1次,所以总的执行次数应该是:-n+(n-1)+(n-2)+…+1 = n(n+1)/2大家还记得这个公式吧?恩恩,没错啦,就是搞死先生发明的算法丫。那咱理解后可以继续,n(n+1)/2 = n2/2+n/2用我们推导大0的攻略,第一条忽略,因为没有常数相加。第二条只保留最高项,所以n/2这项去掉。第三条,去除与最高项相乘的常数,最终得0(n2)。由于每次i*2之后,就举例n更近一步,假设有x个2相乘后大于或等于n,则会退出循环。于是由2个x=n得到x = log(2)n,所以这个循环的时间复杂度为0(logn)。其实理解大0推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力。

基于gcc的stm32环境搭建源码+文档说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值