算法时间复杂度的定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)= 0(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。这样用大写0()来体现算法时间复杂度的记法,我们称之为大0记法。一般情况下,随着输入规模n的增大,T(n)增长最慢的算法为最优算法。显然,由此算法时间复杂度的定义可知,我们自三个求和算法的时间复杂度分别为0(1),O(n)0(n^2)。那么如何分析一个算法的时间复杂度呢?即如何推导大0阶呢?我们给大家整理了以下攻略:一用常数1取代运行时间中的所有加法常数。一在修改后的运行次数函数中,只保留最高阶项。一如果最高阶项存在且不是1,则去除与这个项相乘的常数。一得到的最后结果就是大0阶。世界上的东西就是这么简单,老头儿们把它讲复杂,那么它就复杂了,举几个例子:0(8)?这是初学者常常犯的错误,总认为有多少条语句就有多少。分析下,按照我们的概念“T(n)是关于问题规模n的函数”来说。但是跟问题规模的表亲戚都没关系!,所以我们记作0(1)就可以。另外,如果按照攻略来,那就更简单了,攻略第一条就说明了所有加法常数给他个0(1)即可。所以我们很容易总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。分析下,由于当i=0时,内循环执行了n次,当i=1时内循环则执行n-1次…….当i=n-1时,内循环执行1次,所以总的执行次数应该是:-n+(n-1)+(n-2)+…+1 = n(n+1)/2大家还记得这个公式吧?恩恩,没错啦,就是搞死先生发明的算法丫。那咱理解后可以继续,n(n+1)/2 = n2/2+n/2用我们推导大0的攻略,第一条忽略,因为没有常数相加。第二条只保留最高项,所以n/2这项去掉。第三条,去除与最高项相乘的常数,最终得0(n2)。由于每次i*2之后,就举例n更近一步,假设有x个2相乘后大于或等于n,则会退出循环。于是由2个x=n得到x = log(2)n,所以这个循环的时间复杂度为0(logn)。其实理解大0推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力。
2021-09-23
最新推荐文章于 2021-10-24 11:35:16 发布