Codeforces edu C - Two Arrays

 题意:给定一个非降序a与非升序b数组,要求从n个数,每个数无限个构建相同m长度成对不同的a,b数组并满足bi>=ai,求出不同组数的数量

思路:还以为是组合数学,没看到a,b数组的特性,其实是道思维题。

b1>=b2>=...bm>=a1>=a2>=..>=am,构建一个非递减数组就行了。求出构建不同非递减数组的数量。简单的递推一下,每一个m长度的数组都是由长度m-1,不同n的数组末尾加n构建而来的。

dp[i][j]=(wdp[i][j]+dp[k][j-1])%MOD;

O(n^2*m)的时间复杂度跑一遍枚举递推就行了

多了一些组合数学的代码,忽略就行

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#include<string>
#include<bitset>
#include<cmath>
#include<array>
#include<atomic>
#include<sstream>
#include<stack>
#include<iomanip>
//#include<bits/stdc++.h>

//#define int ll
#define IOS std::ios::sync_with_stdio(false);std::cin.tie(0);
#define pb push_back
#define endl '\n'
#define x first
#define y second
#define Endl endl
#define pre(i,a,b) for(int i=a;i<=b;i++)
#define rep(i,b,a) for(int i=b;i>=a;i--)
#define si(x) scanf("%d", &x);
#define sl(x) scanf("%lld", &x);
#define ss(x) scanf("%s", x);
#define YES {puts("YES");return;}
#define NO {puts("NO"); return;}
#define all(x) x.begin(),x.end()

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<int, PII> PIII;
typedef pair<char, int> PCI;
typedef pair<int, char> PIC;
typedef pair<double, double> PDD;
typedef pair<ll, ll> PLL;
const int N = 1010, M = 2 * N, B = N, MOD = int(1e9+7);
const double eps = 1e-7;
const int INF = 0x3f3f3f3f;
const ll LLINF = 0x3f3f3f3f3f3f3f3f;

//int dx[4] = { -1,0,1,0 }, dy[4] = { 0,1,0,-1 };
int dx[8] = { 1,2,2,1,-1,-2,-2,-1 }, dy[8] = { 2,1,-1,-2,-2,-1,1,2 };
int n, m, k;
ll fact[N], infact[N];
ll dp[N][40];

ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lowbit(ll x) { return x & -x; }
ll qmi(ll a, ll b, ll MOD) {
    ll res = 1;
    while (b) {
        if (b & 1) res = res * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return res;
}

inline void init() 
{
    fact[0] = infact[0] = 1;
    pre(i, 1, n)
    {
        fact[i] = fact[i - 1] * i % MOD;
        infact[i] = infact[i - 1] * qmi(i, MOD - 2, MOD) % MOD;
    }

    auto C = [&](int b, int a) {
        return fact[a] * infact[a - b] % MOD * infact[b] % MOD;
    };

    for (int i = 1; i <= 1000; i++)
    {
        dp[i][1] = 1;
    }

    for (int m = 2; m <= 20; m++)
    {
        for (int n = 1; n <= 1000; n++)
        {
            for (int k = 1; k <= n; k++)
                dp[n][m] = (dp[n][m] + dp[k][m - 1]) % MOD;
        }
    }
}

void slove()
{
    cin >> n >> m;
    m = m << 1;
    ll sum = 0;
    pre(i, 1, n)
        sum = (sum + dp[i][m]) % MOD;
    cout << sum << endl;
    return;
}

signed main()
{
    //IOS;
    int _ = 1;
    //si(_);
    init();
    while (_--)
    {
        slove();
    }
    return 0;
}
/*

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值