- 博客(1)
- 收藏
- 关注
原创 词向量表征方法 ——Word2Vec模型介绍
例如,如果输入的文本是"the quick brown fox",则求出它的向量表示为:(1/4)*[vec(the) + vec(quick) + vec(brown) + vec(fox)]。one-hot向量是一个稀疏向量,每个维度对应一个单词,只有一个维度的值为1,其他维度的值都为0,表示当前单词。Word2Vec是一种基于神经网络的词向量模型,能够将每个单词映射为一个向量,从而将文本转换为数值化的向量表示。神经网络的输入层是文本的向量表示,输出层是目标单词的向量表示。
2023-04-20 05:00:52 353 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人