题目
给定K个整数组成的序列{ N1,N2,…,Nk},“连续子列”被定义为{ Ni,N2i+1,…,Nk},其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
数据1:与样例等价,测试基本正确性;
数据2:102个随机整数;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
算法
1.穷举法
int getMaxSubSeqSum(int k){
int arrays[k];
int result=0;
for(int i=0;i<k;i++)
scanf("%d",&arrays[i]
for(int i=0;i<k;i++){
int temp=0;
for(int j=i;j<k;j++){
temp+=arrays[j];
if(temp>result)
result=temp;
}
}
return result;
}
2.在线处理算法
//在线处理算法。“在线”的意思是每输入一个数据就进行即时处理,在任何一个地方终止输入,都可以得到正确的解
int getMaxSubSeqSum(int k){
int arrays[k];
int result=0,nowSum=0,maxSum=0;
for(int i=0;i<k;i++)
scanf("%d",&arrays[i]);
for(int i=0;i<k;i++){
nowSum+=arrays[i];
if(nowSum>maxSum)
maxSum=nowSum;
else if(nowSum<0)
//此前的累加和一旦小于0,就重置nowSum,不必再理会此前的数据,毕竟是负的
nowSum=0;
}
return maxSum;
}
主函数:
int main(){
int k=0;
scanf("%d",&k);
int result=getMaxSubSeqSum(k);
printf("%d",result);
}