PTA 实例1.1 最大子列和问题(穷举法和在线处理算法)

题目

给定K个整数组成的序列{ N1,N2,…,Nk},“连续子列”被定义为{ Ni,N2i+1,…,Nk},其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:

数据1:与样例等价,测试基本正确性;
数据2:102个随机整数;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

算法

1.穷举法

int getMaxSubSeqSum(int k){
    int arrays[k];
    int result=0;
    for(int i=0;i<k;i++)
        scanf("%d",&arrays[i]
    for(int i=0;i<k;i++){
        int temp=0;
        for(int j=i;j<k;j++){
            temp+=arrays[j];
            if(temp>result)
                result=temp;
        }
    }
    return result;
}

2.在线处理算法

//在线处理算法。“在线”的意思是每输入一个数据就进行即时处理,在任何一个地方终止输入,都可以得到正确的解
int getMaxSubSeqSum(int k){
    int arrays[k];
    int result=0,nowSum=0,maxSum=0;
    for(int i=0;i<k;i++)
        scanf("%d",&arrays[i]);
    for(int i=0;i<k;i++){
        nowSum+=arrays[i];
        if(nowSum>maxSum)
            maxSum=nowSum;
        else if(nowSum<0)
            //此前的累加和一旦小于0,就重置nowSum,不必再理会此前的数据,毕竟是负的
            nowSum=0;
    }
    return maxSum;
}

主函数:

int main(){
    int k=0;
    scanf("%d",&k);
    int result=getMaxSubSeqSum(k);
    printf("%d",result);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值