if item == 15 or item == ‘15’:
resList.append(‘内蒙古’)
if item == 21 or item == ‘21’:
resList.append(‘辽宁’)
if item == 22 or item == ‘22’:
resList.append(‘吉林’)
if item == 23 or item == ‘23’:
resList.append(‘黑龙江’)
if item == 31 or item == ‘31’:
resList.append(‘上海’)
if item == 32 or item == ‘32’:
resList.append(‘江苏’)
if item == 33 or item == ‘33’:
resList.append(‘浙江’)
if item == 34 or item == ‘34’:
resList.append(‘安徽’)
if item == 35 or item == ‘35’:
resList.append(‘福建’)
if item == 36 or item == ‘36’:
resList.append(‘江西’)
if item == 37 or item == ‘37’:
resList.append(‘山东’)
if item == 41 or item == ‘41’:
resList.append(‘河南’)
if item == 42 or item == ‘42’:
resList.append(‘湖北’)
if item == 43 or item == ‘43’:
resList.append(‘湖南’)
if item == 44 or item == ‘44’:
resList.append(‘广东’)
if item == 45 or item == ‘45’:
resList.append(‘广西’)
if item == 46 or item == ‘46’:
resList.append(‘海南’)
if item == 50 or item == ‘50’:
resList.append(‘重庆’)
if item == 51 or item == ‘51’:
resList.append(‘四川’)
if item == 52 or item == ‘52’:
resList.append(‘贵州’)
if item == 53 or item == ‘53’:
resList.append(‘云南’)
if item == 54 or item == ‘54’:
resList.append(‘西藏’)
if item == 61 or item == ‘61’:
resList.append(‘陕西’)
if item == 62 or item == ‘62’:
resList.append(‘甘肃’)
if item == 63 or item == ‘63’:
resList.append(‘青海’)
if item == 64 or item == ‘64’:
resList.append(‘宁夏’)
if item == 65 or item == ‘65’:
resList.append(‘新疆’)
if item == 71 or item == ‘71’:
resList.append(‘台湾省’)
if item == 81 or item == ‘81’:
resList.append(‘香港’)
if item == 82 or item == ‘82’:
resList.append(‘澳门’)
return resList
pd.set_option(‘display.max_columns’, None)
pd.set_option(‘display.max_rows’, None)
dataPath = ‘dataFiles/Starbucks-Locations.csv’
star_df = pd.read_csv(dataPath)
print(star_df.head(1)) # 打印第一行查看字段信息
print(star_df.info())
按国家分类(pandas分组方法)
groupsByCountry = star_df.groupby(by=‘Country’)
print(groupsByCountry)
groupsByCountry是一个可遍历的对象
for countryName, data in groupsByCountry:
countryName第一个变量为分类的国家名
data为每个国家的数据,类型为DataFrame
print(countryName)
print(‘-’ * 100)
# print(data)
print(‘#’ * 100)
US_df = star_df[star_df[‘Country’] == ‘US’]
print(US_df.head(1))
调用聚合方法
countryCount = groupsByCountry[‘Brand’].count() # 计数需要使用没有缺失的字段
print(‘美国星巴克数量:’, countryCount[‘US’]) # 美国星巴克数量
print(‘中国星巴克数量:’, countryCount[‘CN’]) # 中国星巴克数量
统计中国不同省份的星巴克数量
CN_df = star_df[star_df[‘Country’] == ‘CN’] # 中国星巴克信息
print(CN_df.info())
groupsByProvinceInChina = CN_df.groupby(by=‘State/Province’)
for province,data in groupsByProvinceInChina:
print(province)
provinceCount = \
groupsByProvinceInChina[[‘Brand’]].count().sort_values(by=‘Brand’, ascending=True)
print(type(provinceCount))
print(provinceCount)
print(list(provinceCount.index))
print(list(provinceCount[‘Brand’]))
最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数初中级Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**
因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频
如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
[外链图片转存中…(img-GvcGxG61-1711093648454)]