数据分析案例:全球星巴克数量统计,金三银四我带你去BAT面试现场

文章介绍了如何使用Python和Pandas对星巴克门店数据进行分组分析,包括按国家和中国省份统计数量,并提到了Python在数据处理、机器学习和网络爬虫等方面的应用。同时,还强调了系统学习Python的重要性,以及提供了一份完整的Python学习资源指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

if item == 15 or item == ‘15’:

resList.append(‘内蒙古’)

if item == 21 or item == ‘21’:

resList.append(‘辽宁’)

if item == 22 or item == ‘22’:

resList.append(‘吉林’)

if item == 23 or item == ‘23’:

resList.append(‘黑龙江’)

if item == 31 or item == ‘31’:

resList.append(‘上海’)

if item == 32 or item == ‘32’:

resList.append(‘江苏’)

if item == 33 or item == ‘33’:

resList.append(‘浙江’)

if item == 34 or item == ‘34’:

resList.append(‘安徽’)

if item == 35 or item == ‘35’:

resList.append(‘福建’)

if item == 36 or item == ‘36’:

resList.append(‘江西’)

if item == 37 or item == ‘37’:

resList.append(‘山东’)

if item == 41 or item == ‘41’:

resList.append(‘河南’)

if item == 42 or item == ‘42’:

resList.append(‘湖北’)

if item == 43 or item == ‘43’:

resList.append(‘湖南’)

if item == 44 or item == ‘44’:

resList.append(‘广东’)

if item == 45 or item == ‘45’:

resList.append(‘广西’)

if item == 46 or item == ‘46’:

resList.append(‘海南’)

if item == 50 or item == ‘50’:

resList.append(‘重庆’)

if item == 51 or item == ‘51’:

resList.append(‘四川’)

if item == 52 or item == ‘52’:

resList.append(‘贵州’)

if item == 53 or item == ‘53’:

resList.append(‘云南’)

if item == 54 or item == ‘54’:

resList.append(‘西藏’)

if item == 61 or item == ‘61’:

resList.append(‘陕西’)

if item == 62 or item == ‘62’:

resList.append(‘甘肃’)

if item == 63 or item == ‘63’:

resList.append(‘青海’)

if item == 64 or item == ‘64’:

resList.append(‘宁夏’)

if item == 65 or item == ‘65’:

resList.append(‘新疆’)

if item == 71 or item == ‘71’:

resList.append(‘台湾省’)

if item == 81 or item == ‘81’:

resList.append(‘香港’)

if item == 82 or item == ‘82’:

resList.append(‘澳门’)

return resList

pd.set_option(‘display.max_columns’, None)

pd.set_option(‘display.max_rows’, None)

dataPath = ‘dataFiles/Starbucks-Locations.csv’

star_df = pd.read_csv(dataPath)

print(star_df.head(1)) # 打印第一行查看字段信息

print(star_df.info())

按国家分类(pandas分组方法)

groupsByCountry = star_df.groupby(by=‘Country’)

print(groupsByCountry)

groupsByCountry是一个可遍历的对象

for countryName, data in groupsByCountry:

countryName第一个变量为分类的国家名

data为每个国家的数据,类型为DataFrame

print(countryName)

print(‘-’ * 100)

# print(data)

print(‘#’ * 100)

US_df = star_df[star_df[‘Country’] == ‘US’]

print(US_df.head(1))

调用聚合方法

countryCount = groupsByCountry[‘Brand’].count() # 计数需要使用没有缺失的字段

print(‘美国星巴克数量:’, countryCount[‘US’]) # 美国星巴克数量

print(‘中国星巴克数量:’, countryCount[‘CN’]) # 中国星巴克数量

统计中国不同省份的星巴克数量

CN_df = star_df[star_df[‘Country’] == ‘CN’] # 中国星巴克信息

print(CN_df.info())

groupsByProvinceInChina = CN_df.groupby(by=‘State/Province’)

for province,data in groupsByProvinceInChina:

print(province)

provinceCount = \

groupsByProvinceInChina[[‘Brand’]].count().sort_values(by=‘Brand’, ascending=True)

print(type(provinceCount))

print(provinceCount)

print(list(provinceCount.index))

print(list(provinceCount[‘Brand’]))

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数初中级Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
img

长或者是报班学习,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

因此收集整理了一份《2024年Python爬虫全套学习资料》送给大家,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频

如果你觉得这些内容对你有帮助,可以添加下面V无偿领取!(备注:python)
[外链图片转存中…(img-GvcGxG61-1711093648454)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值