矩阵乘法(如下图所示):
设第一个矩阵是A*B,第二个矩阵是B*C,那么乘出来得到的就是A*C
两个矩阵相乘的模板:
void mul(int a[][],b[][],c[][])
{
for(int i=1;i<=A;i++)
for(int j=1;j<=C;j++)
for(int k=1;k<=B;k++)
c[i][j]=a[i][k]*b[k][j];
}
常用场景:矩阵快速幂
矩阵乘法具有结合律如A*B*C==A*(B*C),当遇到A*(X*X*X*...*X)时就可以算法后面的X^n用快速幂来解决先。
传送门:1303. 斐波那契前 n 项和 - AcWing题库
思路:回顾斐波那契数列可以知道f[n]=f[n-1]+f[n-2]
现在定义一个向量F[n]= [ f[n] , f[n+1] ] , F[n+1]=[ f[n+1] ,f[n+2] ],其余看下图:
由上式可以逐渐推出F[n]的表达式,F[n]=F[1]*A^(n-1),其中F[1,1]=[1,1],后半部分的A就是上图中的01行列式,快用快速幂求它的次方
对于题目中的S[n],可以将F[n]变成一个带有S[n]的向量,F[n]= [ f[n] , f[n+1],S[n] ]
F[n+1]=[ f[n+1] ,f[n+2] , S[n+1] ],至于推法形如下图:
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=3;
typedef long long ll;
int n,m;
int a[N][N]={
{0,1,0},
{1,1,1},
{0,0,1}
};
void mul(int a[],int b[][N])
{
int tmp[N]={0};
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
tmp[i]=(tmp[i]+(ll)a[j]*b[j][i])%m;
memcpy(a,tmp,sizeof tmp);//不能放传进来的C在sizeof后面,C是个形参
}
void mul(int a[][N],int b[][N])
{
int tmp[N][N]={0};
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
for(int k=0;k<N;k++)
tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
memcpy(a,tmp,sizeof tmp);
}
int main()
{
scanf("%d%d",&n,&m);
int f1[N]={1,1,1};
n--;
while(n)
{
if(n&1) mul(f1,a); //相当于res*a操作
mul(a,a); //相当于快速幂里面的a*a操作
n>>=1;
}
cout<<f1[2]<<endl;
return 0;
}
又或者只用一个函数:
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=3;
typedef long long ll;
int n,m;
int a[N][N]={
{0,1,0},
{1,1,1},
{0,0,1}
};
void mul(int a[][N],int b[][N])
{
int tmp[N][N]={0};
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
for(int k=0;k<N;k++)
tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
memcpy(a,tmp,sizeof tmp);
}
int main()
{
scanf("%d%d",&n,&m);
int f1[N][N]={1,1,1};
n--;
while(n)
{
if(n&1) mul(f1,a); //相当于res*a操作
mul(a,a); //相当于快速幂里面的a*a操作
n>>=1;
}
cout<<f1[0][2]<<endl;
return 0;
}
——————————————分割线——————————————
斐波那契数列的扩展:
传送门: 佳佳的 Fibonacci
思路:新的要求的 T(n)和原本的S(n)不同,不能像S(n)一样用S(n-1)+F(n)表示,但可以像下图里面一样用式子2减去式子1之后得到一个新的不含额外变量的式子,
新的式子用p(n)表示为n*S(n)-T(n),p(n+1)也可以表示为p(n)+s(n)
最后设一个四元向量F(n)表示[ f[n] , f[n+1] , S[n] , p[n]],可以得出F[n]=f[n-1]*A,F[n]=F[1]*(A^(n-1)) ,接着用矩阵快速幂来做。
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=4;
typedef long long ll;
int n,m;
int a[N][N]={
{0,1,0,0},
{1,1,1,0},
{0,0,1,1},
{0,0,0,1}
};
void mul(int a[][N],int b[][N])
{
int tmp[N][N]={0};
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
for(int k=0;k<N;k++)
tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
memcpy(a,tmp,sizeof tmp);
}
int main()
{
scanf("%d%d",&n,&m);
int f1[N][N]={1,1,1,0};
int k=n;
n--;
while(n)
{
if(n&1) mul(f1,a); //相当于res*a操作
mul(a,a); //相当于快速幂里面的a*a操作
n>>=1;
}
cout<<(((ll)k*f1[0][2]-f1[0][3])%m+m)%m<<endl;
return 0;
}