矩阵乘法基本概念及模板题目

矩阵乘法(如下图所示):

设第一个矩阵是A*B,第二个矩阵是B*C,那么乘出来得到的就是A*C

两个矩阵相乘的模板:

void mul(int a[][],b[][],c[][])
{
    for(int i=1;i<=A;i++)
    for(int j=1;j<=C;j++)
    for(int k=1;k<=B;k++)
    c[i][j]=a[i][k]*b[k][j];
}

常用场景:矩阵快速幂

矩阵乘法具有结合律如A*B*C==A*(B*C),当遇到A*(X*X*X*...*X)时就可以算法后面的X^n用快速幂来解决先。

传送门:1303. 斐波那契前 n 项和 - AcWing题库

思路:回顾斐波那契数列可以知道f[n]=f[n-1]+f[n-2]

现在定义一个向量F[n]= [ f[n] , f[n+1] ] , F[n+1]=[ f[n+1] ,f[n+2] ],其余看下图:

由上式可以逐渐推出F[n]的表达式,F[n]=F[1]*A^(n-1),其中F[1,1]=[1,1],后半部分的A就是上图中的01行列式,快用快速幂求它的次方

对于题目中的S[n],可以将F[n]变成一个带有S[n]的向量,F[n]= [ f[n] , f[n+1],S[n] ]

F[n+1]=[ f[n+1] ,f[n+2] , S[n+1] ],至于推法形如下图:

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=3;
typedef long long ll;
 int n,m;
int a[N][N]={
    {0,1,0},
    {1,1,1},
    {0,0,1}
};
void mul(int a[],int b[][N])
{
    int tmp[N]={0};
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        tmp[i]=(tmp[i]+(ll)a[j]*b[j][i])%m;
        
    memcpy(a,tmp,sizeof tmp);//不能放传进来的C在sizeof后面,C是个形参
}
void mul(int a[][N],int b[][N])
{
    int tmp[N][N]={0};

    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        for(int k=0;k<N;k++)
        tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
    memcpy(a,tmp,sizeof tmp);
}

int main()
{
    scanf("%d%d",&n,&m);
    int f1[N]={1,1,1};
    n--;
    while(n)
    {
        if(n&1) mul(f1,a); //相当于res*a操作
        mul(a,a);  //相当于快速幂里面的a*a操作
        n>>=1;
    }
    cout<<f1[2]<<endl;
    return 0;
}

又或者只用一个函数:

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=3;
typedef long long ll;
 int n,m;
int a[N][N]={
    {0,1,0},
    {1,1,1},
    {0,0,1}
};

void mul(int a[][N],int b[][N])
{
    int tmp[N][N]={0};

    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        for(int k=0;k<N;k++)
        tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
    memcpy(a,tmp,sizeof tmp);
}

int main()
{
    scanf("%d%d",&n,&m);
    int f1[N][N]={1,1,1};
    n--;
    while(n)
    {
        if(n&1) mul(f1,a); //相当于res*a操作
        mul(a,a);  //相当于快速幂里面的a*a操作
        n>>=1;
    }
    cout<<f1[0][2]<<endl;
    return 0;
}

——————————————分割线——————————————

斐波那契数列的扩展:

传送门: 佳佳的 Fibonacci

思路:新的要求的 T(n)和原本的S(n)不同,不能像S(n)一样用S(n-1)+F(n)表示,但可以像下图里面一样用式子2减去式子1之后得到一个新的不含额外变量的式子,

新的式子用p(n)表示为n*S(n)-T(n),p(n+1)也可以表示为p(n)+s(n)

最后设一个四元向量F(n)表示[ f[n] , f[n+1] , S[n] , p[n]],可以得出F[n]=f[n-1]*A,F[n]=F[1]*(A^(n-1)) ,接着用矩阵快速幂来做。

代码:
 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=4;
typedef long long ll;
 int n,m;
int a[N][N]={
    {0,1,0,0},
    {1,1,1,0},
    {0,0,1,1},
    {0,0,0,1}
};

void mul(int a[][N],int b[][N])
{
    int tmp[N][N]={0};

    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        for(int k=0;k<N;k++)
        tmp[i][j]=(tmp[i][j]+(ll)a[i][k]*b[k][j])%m;
    memcpy(a,tmp,sizeof tmp);
}

int main()
{
    scanf("%d%d",&n,&m);
    int f1[N][N]={1,1,1,0};
    int k=n;
    n--;
    while(n)
    {
        if(n&1) mul(f1,a); //相当于res*a操作
        mul(a,a);  //相当于快速幂里面的a*a操作
        n>>=1;
    }
    cout<<(((ll)k*f1[0][2]-f1[0][3])%m+m)%m<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值