最大子序列和问题的求解

本文介绍了四种求解最大子序列和问题的算法,包括穷举式O(N^3)、平方级O(N^2)、递归O(NlogN)和线性时间O(N)。详细解释了每种算法的工作原理,并讨论了线性时间算法的在线性质。
摘要由CSDN通过智能技术生成

最大子序列和问题的求解

本文给出求解最大子序列和问题的4个算法

声明:本文中的代码源于《数据结构与算法分析——C++语言描述(第四版)》,为便于回顾比较整理如下

问题描述

最大子序列和问题

给定(可能有负的)整数A1,A2,···,AN,求解 ∑ K = i j A i \sum_{K=i}^{j}A_i K=ijAi 的最大值。(为方便起见,如果所有整数均为负数,则最大子序列的和为 0)。

例:
对于输入 -2,11,-4,13,-5,-2,答案为 20(从 A2 到 A4)。

算法1

穷举式地尝试所有的可能,运行时间为 O(N3)

/**
 * 最大相连子序列和的立方级(即三次的)算法
 */
int maxSubSum1(const vector<int> & a)
{
	int maxSum = 0;
	
	for(int i = 0; i < a.size(); ++i)
		for(int j = i; j < a.size(); ++j){
			int thisSum = 0;
			
			for(int k = i; k <= j; ++k)
				thisSum += a[k];
				
			if(thisSum > maxSum)
				maxSum = thisSum;
		}
	
	return maxSum;
 } 

算法2,O(N2)

/**
 * 最大相连子序列和的平方级(即二次的)算法
 */ 
int maxSubSum2(const vector<int> & a)
{
	int maxSum = 0;
	
	for(int i = 0; i < a.size(); ++i)
	{
		int thisSum = 0;
		for(int j = i; j < a.size(); ++j)
		{
			thisSum += a[j];
			
			if(thisSum > maxSum)
				maxSum = thisSum;
		}
	}
	
	return maxSum;
 } 

算法3:递归和相对复杂的 O(N log N)算法

分治(divide-and-conquer)策略:把问题分成两个大致相等的子问题,然后递归地对它们求解,这是“分”的部分。“治”阶段将两个子问题的解修补到一起并可能再做些小量的附加工作,最后得到整个问题的解。

最大子序列和可能在 3 处出现:或者整个出现在输入数据的左半部,或者整个出现在右半部,或者跨越输入数据的中部位于在左右两部分之间。前两种情况可以递归求解。第三种情况的最大和可以通过求出前半部分(包含前半部分最后一个元素)的最大和以及后半部分(包含后半部分第一个元素)的最大和而得到,然后将这两个加在一起。

/**
  * 相连最大子序列和的递归算法
  * 找出生成 [left..right] 的子数组中的最大和
  * 不试图保留具体的最佳序列
  */
 intmaxSumRec(const vector<int> & a, int left, int right)
 {
 	if(left==right)	//基准情形
	 	if(a[left] > 0)
		 	return a[left];
		else
			return 0;
			
	int center = ( left + right ) / 2;
	int maxLeftSum = maxSumRec(a, left, center);
	int maxRightSum = maxSumRec(a, center, right);
	
	int maxLeftBorderSum = 0, leftBorderSum = 0;
	for(int i = center; i > left; --i)
	{
		leftBorderSum += a[i];
		if(leftBorderSum > maxLeftBorderSum)
			maxLeftBorderSum = leftBorderSum;
	 } 
	 
	 int maxRightBorderSum = 0, rightBorderSum = 0;
	 for(int j = center + 1; j <= right; ++j)
	 {
	 	rightBorderSum += a[j];
	 	if(rightBorder > maxRightBorderSum)
	 		maxRightBorderSum = rightBorderSum;
	  } 
	  
	  return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);
  } 
  
/**
 * 相连最大子序列和分治算法的驱动程序
 */
int maxSubSum3(const vector<int> & a)
{
	return maxSumRec( a, 0, a.size()-1);
 } 

算法4:线性时间算法

/**
 * 线性时间最大相连子序列和算法
 */
int maxSubSum4(const vector<int> & a)
{
	int maxSum = 0, thisSum = 0;
	
	for(int j=0; j<a.size(); ++j)
	{
		thisSum += a[j];
		
		if(thisSum > maxSum)
			maxSum = thisSum;
		else if(thisSum < 0)
			thisSum = 0;
	}
	
	return maxSum;
 } 

该算法的一个附加优点:只对数据进行一次扫描,一旦 a[ i ] 被读入并被处理,它就不再需要被记忆。因此,如果数组再磁盘上或通过互联网传送,那么就可以被顺序读入,在主存中不必存储数组的任何部分。不仅如此,在任何时刻,算法都能对它已经读入的数据给出子序列问题的正确答案(其他算法不具有这个特性)。具有这种特性的算法叫作联机算法(on-line algorithm)。仅需要常量空间并以线性时间运行的联机算法几乎是完美的算法。

  • 38
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

turtleSteps

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值