一、算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率
。
时间效率被称为时间复杂度,而空间效率被称作
空间复杂度。
时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
二、时间复杂度
1. 时间复杂度的概念
时间复杂度的定义:在计算机科学中,
算法的时间复杂度是一个数学函数
,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
2. 大O的渐进表示法
// 计算func1基本操作执行了多少次?
void func1(int N){
//N^2次
int count = 0;
for (int i = 0; i < N ; i++) {
for (int j = 0; j < N ; j++) {
count++;
}
}
//2*N次
for (int k = 0; k < 2 * N ; k++) {
count++;
}
//10次
int M = 10;
while ((M--) > 0) {
count++;
}
System.out.println(count);
}
Func1
执行的基本操作次数 :F(N) = N^2 + 2*N + 10
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要
大概执行次数,那么
使用大
O
的渐进表示法。
推导大
O
阶方法:
1
、用常数
1
取代运行时间中的所有加法常数。
2
、在修改后的运行次数函数中,只保留最高阶项。
3
、如果最高阶项存在且不是
1
,则去除与这个项目相乘的常数。得到的结果就是大
O
阶。
使用大
O
的渐进表示法以后,
Func1的时间复杂度为:O( N^2 )
3. 常见时间复杂度的计算的实例
①F(N) = 100 时间复杂度为:O( 1 )
// 计算func2的时间复杂度?
void func2(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
count++;
}
System.out.println(count);
}
②F(N) = M + N 时间复杂度为:O( M + N )
// 计算func3的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++;
}
for (int k = 0; k < N ; k++) {
count++;
}
System.out.println(count);
}
③F(N) = N 时间复杂度为:O( N )
// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}
④F(N) = (N*(N-1))/2 时间复杂度为:O( N^2 )
// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
⑤F(N) = lg N 时间复杂度为:O( lgN )
// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}
⑥F(N) = 2^N 时间复杂度为:O( 2^N )
// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}
三、空间复杂度
1. 空间复杂度的概念
空间复杂度是对一个算法在运行过程中
临时占用存储空间大小的量度
。空间复杂度不是程序占用了多少
bytes
的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大
O
渐进表示法
。
2. 常见空间复杂度的计算的实例
①空间复杂度为:O( 1 )
// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}
②空间复杂度为:O( N )
// 计算阶乘递归factorial的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}