时间复杂度和空间复杂度

一、算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率 时间效率被称为时间复杂度,而空间效率被称作 空间复杂度 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、时间复杂度

1. 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个数学函数 ,它定量描述了该算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

2. 大O的渐进表示法

// 计算func1基本操作执行了多少次? 
void func1(int N){ 

    //N^2次
    int count = 0; 
    for (int i = 0; i < N ; i++) { 
        for (int j = 0; j < N ; j++) {
            count++; 
        } 
    }

    //2*N次
    for (int k = 0; k < 2 * N ; k++) {
        count++; 
    }

    //10次
    int M = 10; 
    while ((M--) > 0) {
        count++; 
    }

    System.out.println(count); 
}
Func1 执行的基本操作次数 :F(N) = N^2 + 2*N + 10
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么 使用大 O 的渐进表示法。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1的时间复杂度为:O( N^2 )

3. 常见时间复杂度的计算的实例

F(N) = 100                ​​​​​​​时间复杂度​​​​​​​为:O( 1 ) 

// 计算func2的时间复杂度? 
void func2(int N) { 
    int count = 0; 
    for (int k = 0; k < 100; k++) {
        count++; 
    }
    System.out.println(count); 
}

F(N) = M + N                ​​​​​​​时间复杂度​​​​​​​为:O( M + N ) 

// 计算func3的时间复杂度? 
void func3(int N, int M) { 
    int count = 0; 
    for (int k = 0; k < M; k++) {
        count++; 
    }

    for (int k = 0; k < N ; k++) {
        count++; 
    }
    System.out.println(count); 
}

F(N) = N                ​​​​​​​时间复杂度​​​​​​​为:O( N ) 

// 计算阶乘递归factorial的时间复杂度? 
long factorial(int N) { 
    return N < 2 ? N : factorial(N-1) * N; 
}

④F(N) = (N*(N-1))/2                时间复杂度​​​​​​​为:O( N^2 )

// 计算bubbleSort的时间复杂度? 
void bubbleSort(int[] array) { 
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true; 
        for (int i = 1; i < end; i++) { 
            if (array[i - 1] > array[i]) { 
                Swap(array, i - 1, i); 
                sorted = false; 
            } 
        }

        if (sorted == true) {
            break; 
        } 
    } 
}

F(N) = lg N                时间复杂度​​​​​​​为:O( lgN )

// 计算binarySearch的时间复杂度? 
int binarySearch(int[] array, int value) { 
    int begin = 0; 
    int end = array.length - 1; 
    while (begin <= end) { 
        int mid = begin + ((end-begin) / 2); 
        if (array[mid] < value)
            begin = mid + 1; 
        else if (array[mid] > value) 
            end = mid - 1; 
        else    
            return mid; 
    }
    return -1; 
}

F(N) = 2^N                时间复杂度​​​​​​​为:O( 2^N )

// 计算斐波那契递归fibonacci的时间复杂度? 
int fibonacci(int N) { 
    return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2); 
}

三、空间复杂度

1. 空间复杂度的概念

空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法

2. 常见空间复杂度的计算的实例

空间复杂度​​​​​​​为:O( 1 )

// 计算bubbleSort的空间复杂度? 
void bubbleSort(int[] array) { 
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true; 
        for (int i = 1; i < end; i++) { 
            if (array[i - 1] > array[i]) { 
                Swap(array, i - 1, i); 
                sorted = false; 
            } 
        }

        if (sorted == true) {
            break; 
        } 
    } 
}

空间复杂度​​​​​​​为:O( N )

// 计算阶乘递归factorial的空间复杂度? 
long factorial(int N) { 
    return N < 2 ? N : factorial(N-1) * N; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值