描述
给定一个m*n的矩阵,如果有一个元素是0,就把该元素所在的行和列上的元素全置为0,要求使用原地算法。
拓展:
你的算法有使用额外的空间吗?
一种比较直接的算法是利用O(m,n)的空间,但是这不是一个好的解法
使用简单的改进可以在O(m+n)的空间解决这个问题,但是还不是最佳的解法
你能在常量级的空间复杂度内解决这个问题吗?
//时间复杂度O(mn),空间复杂度O(1)
//利用第一行和第一列的空间做记录
class Solution {
public:
void setZeroes(vector<vector<int> > &matrix) {
const int row = matrix.size();
const int col = matrix[0].size();
bool row_flg = false, col_flg = false;
//判断第一行和第一列是否有零,防止被覆盖
for (int i = 0; i < row; i++)
if (0 == matrix[i][0]) {
col_flg = true;
break;
}
for (int i = 0; i < col; i++)
if (0 == matrix[0][i]) {
row_flg = true;
break;
}
//遍历矩阵,用第一行和第一列记录0的位置
for (int i = 1; i < row; i++)
for (int j = 1; j < col; j++)
if (0 == matrix[i][j]) {
matrix[i][0] = 0;
matrix[0][j] = 0;
}
//根据记录清零
for (int i = 1; i < row; i++)
for (int j = 1; j < col; j++)
if (0 == matrix[i][0] || 0 == matrix[0][j])
matrix[i][j] = 0;
//最后处理第一行
if (row_flg)
for (int i = 0; i < col; i++)
matrix[0][i] = 0;
if (col_flg)
for (int i = 0; i < row; i++)
matrix[i][0] = 0;
}
};