今天上午在看《程序员的数学》第八章_反证法的思考题:请证明质数是无穷的。
书本是以反证法的方法来证明,即:1)先假设要证明断言的否定成立,在这里要证明的断言为:质数是无穷的。那么这个断言的否定便是:质数是非无穷的,或者说:质数不是无穷的,也可以说质数是有限的。然后书本上说:2)我们去根据这个假设的断言的否定然后去推导出矛盾的结果,我对这句话的理解是:将这个·假设的断言的否定作为条件·去使用,·利用其他的已知·去按照·正确的推论方法·去 (推理出)产出与假设相矛盾的结论(也就是与含义相反的结论)说明最初的假设是错误的。但是我做了一下这道题并且细细品读了一下他每句话下给的步骤,然后我对于反证法理解的是:我们利用假设和其他已知正确结论朝着与假设相反的方向去走,如果走到了与假设相反的地方我们就能说以假设为前提证明的结论与假设矛盾所以假设无法成立,但是如果走不到呢?也就是证出了假设不矛盾,也就是想证明结论与假设矛盾的过程成了假设合理性的一个检验过程,那么假设就成立。所以我觉得 2)这句话不太严谨,或者说说起来没有那么好理解,因为这种表述方式中“根据假设的否定然后去推导出矛盾的结果”并没有说出存在推倒不出矛盾结果的情况,并且不是所有的证明都是能推导出矛盾结果的,所以我认为这种表述不如换成:我们将假设作为条件尝试去推论出一个与假设矛盾的结论,这种矛盾结论就说明假设不成立,而我们假设的是断言的否定,否定不成立而否定的矛盾(对立面)成立(命题与命题的否定存在对立关系),所以就证明了断言的成立。
上面是对书本上反证法表述上的一定自我理解的表述,下面就要说一下,在这个证明的步骤时自己想到的另一个证明:正整数是由奇数与偶数构成的。
开始想这个问题时1)先是写出奇数与偶数的定义式:偶数 = 2n 奇数 = 2n + 1 (n属于自然数也就是0和正整数)2)然后我发现当n1=k n2=k+1时有n2=n1+1,偶数2k 奇数2k+1 偶数2(k+1) 奇数2(k+1)+1这四个数每个之间都相差1,然后就有一种递归关系的感觉,然后就想到了递归关系的证明方法归纳法证明于是写了下面这个证明的草稿:
这个证明肯定有很多言语表达不是很完善,但至少给我提供了大体思路,后续我也会继续完善。