给定一颗树,树中包含 nn 个结点(编号 1∼n1∼n)和 n−1n−1 条无向边。
请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。
重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。
输入格式
第一行包含整数 nn,表示树的结点数。
接下来 n−1n−1 行,每行包含两个整数 aa 和 bb,表示点 aa 和点 bb 之间存在一条边。
输出格式
输出一个整数 mm,表示将重心删除后,剩余各个连通块中点数的最大值。
数据范围
1≤n≤1051≤n≤105
输入样例
9
1 2
1 7
1 4
2 8
2 5
4 3
3 9
4 6
输出样例:
4
分析:一个节点被去除后,树被分为若干个连通的部分,整个树除了该节点所在的子树部分,以及该节点的每个子树是一个部分。枚举每个节点,找到答案。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5*10;
int n, idx, ans = N;//因为要求所有情况的最小值,所以要把ans初始化为最大
int h[N], e[N], ne[N];//储存图
bool st[N]; //查看是否枚举过该点
void add (int a, int b)//储存图
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
//返回子树的节点数
int dfs (int u)
{
st[u] = 1;//将该节点设为被枚举过
int res = 0, sum = 0; //res为将该节点去掉后,每个连通图上节点的最大值
//sum为该节点的所有子树的节点数之和
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (st[j]) continue;
int s = dfs(j); //递归,寻找每个子树的节点数
res = max (s, res);//求所有子树节点数的最大值
sum += s;
}
res = max (res, n - sum - 1);//res与除了节点及其子树节点和的其余部分比较
ans = min (res, ans);//ans是所有res的最小值
return sum + 1;//返回这个节点所在子树的节点数
}
int main ()
{
memset (h, -1, sizeof(h));//初始化头节点
cin >> n;
for (int i = 1; i < n; i ++ )
{
int a, b;
cin >> a >> b;
add(a, b), add(b, a);//储存成双向的,这样可以不用找起点
}
dfs (1);
cout << ans;
return 0;
}