类型:流程控制
描述
《九章算术》的“盈不足篇”里有一个很有意思的老鼠打洞问题。原文这么说的:今有垣厚十尺,两鼠对穿。大鼠日一尺,小鼠亦一尺。大鼠日自倍,小鼠日自半。问:何日相逢?各穿几何?
这道题的意思就是说,有一堵十尺厚的墙,两只老鼠从两边向中间打洞。大老鼠第一天打一尺,小老鼠也是一尺。大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半。问它们几天可以相逢,相逢时各打了多少。
(注:本题禁止使用幂运算)
输入格式
输入1个整数,代表墙的厚度,单位为尺
输出格式
第一行输出1个整数,表示相遇时所需的天数
第二行输出2个浮点数,分别为小鼠和大鼠打洞的距离,单位为尺,保留小数点后1位数字。
示例
输入:10
输出:
4
1.8 8.2
参考答案
这题一开始写的时候有很多细节容易注意不到,多练习!感觉答案的代码很简洁,值得学习。
n = int(input())
rat, mouse, day, time = 1, 1, 0, 1
distance_of_rat, distance_of_mouse = 0, 0 # 大老鼠和小老鼠的打洞距离
while n > 0:
if n - mouse - rat < 0:
time = n / (mouse + rat)
n = n - mouse - rat
distance_of_mouse = distance_of_mouse + time * mouse
distance_of_rat = distance_of_rat + time * rat
rat = rat * 2
mouse = mouse / 2
day = day + 1
print(day)
print(round(distance_of_mouse, 1), round(distance_of_rat, 1))