数学建模
文章平均质量分 70
数学建模笔记
优乐美Ying
努力闪闪发光
展开
-
聚类模型(K-means聚类,系统聚类,DBSCAN算法)
DBSCAN(Density-based spatial clustering of applicationswith noise)是Martin Ester, Hans-PeterKriegel等人于1996年提出的一种基于密度的聚类方法,聚类前不需要预先指定聚类的个数,生成的簇的个数不定(和数据有关)。系统聚类的合并算法通过计算两类数据点间的距离,对最为接近的两类数据点进行组合,并反复迭代这一过程,直到将所有数据点合成一类,并生成聚类谱系图。选出初始点后,就继续使用标准的K-means算法了。原创 2023-01-10 23:45:45 · 1283 阅读 · 1 评论 -
多元线性回归分析
异方差这里出现的信息可以理解为对于模型的稳定程度所做的贡献,异方差是指各个扰动项的方差不相同,那么方差较大的扰动项破坏模型稳定性的程度就较大,我们就说它包含的信息量减少。(5)研究产品寿命、企业寿命甚至是人的寿命(这种数据往往不能精确的观测,例如现在要研究吸烟对于寿命的影响,如果选取的样本中老王60岁,现在还活的非常好,我们不可能等到他去世了再做研究,那怎么办呢?(3)消费者调查得到的数据(1表示非常不喜欢,2表示有点不喜欢,3表示一般般,4表示有点喜欢,5表示非常喜欢)(定序变量)。原创 2023-01-06 10:52:13 · 1638 阅读 · 0 评论 -
典型相关分析(附SPSS操作)
典型相关分析:研究两组变量(每个变量中都可能有多个指标)之间相关关系的一种多元统计方法。p值小于0.05(0.1)表示在95%(90%)的置信水平下拒绝原假设,即认为两组变量有关。选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;3)确定典型相关变量的个数(直接看典型相关系数对应的P值即可)(重要~~)5)进行典型载荷分析 (典型荷载分析是指原始变量与典型变量之间相关性分析)被选出的线性组合配对称为。原创 2023-01-04 23:30:59 · 5144 阅读 · 0 评论 -
相关系数(皮尔逊pearson相关系数和斯皮尔曼spearman等级相关系数)
(2)在不确定两个变量是什么关系的情况下,即使算出皮尔逊相关系数,发现很大,也不能说明那两个变量线性相关,甚至不能说他们相关,(1)如果两个变量本身就是线性的关系(前提),那么皮尔逊相关系数绝对值大的就是相关性强,小的就是相关性弱;对相关系数的解释是依赖于具体的应用背景和目的的。(2)离群点对相关系数的影响很大,例如图3,去掉离群点后,相关系数为0.98。1.连续数据,正态分布,线性关系,用pearson相关系数是最恰当,当然用。R返回的是相关系数表,P返回的是对应于每个相关系数的p值。原创 2022-12-29 20:46:39 · 10809 阅读 · 0 评论 -
拟合算法(模型+代码)
argmin 存在参数k,b使括号里的值最小第一种有绝对值,不易求导(求导在求最小值),计算较为复杂;所以我们往往使用第二种定义,也正是最小二乘的思想。为什么不用四次方?(1)避免极端数据对拟合曲线的影响。(2)最小二乘法得到的结果和MLE极大似然估计一致。不用奇数次方的原因:误差会正负相抵如何评价拟合的好坏: SSE越小越好思考:y=a+bx*x是线性函数吗?答:是的,因为我们这里说的线性函数是指对参数为线性(线性于参数)如何判断线性于参数的函数?在函数中,参数仅以一次方出现,且不能乘以或除以原创 2022-12-28 16:44:42 · 1174 阅读 · 0 评论 -
TOPSIS法(熵权法)(模型+MATLAB代码)
标准化处理:为了消去不同指标量纲的影响,需要对已经正向化的矩阵进行标准化处理。(2)计算第j项指标下第i个样本所占的比重,并将其看作相对熵计算中用到的概率。(3)计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权。信息效用值的定义:dj=1-ej 信息效用值越大,其对应的信息就越多。(1)判断输入的矩阵中是否存在负数,如果有则要重新标准化到非负区间。当然:层次分析法的主观性太强了,更推荐大家使用。TOPSIS法是一种常用的。带权重的TOPSIS:使用。信息熵越大对应的信息量越小。原创 2022-12-27 21:07:44 · 40489 阅读 · 14 评论 -
层次分析法(AHP)
选择哪种方案最好,哪位运动员表现的更优秀。评价类问题可以用。原创 2022-12-26 17:27:15 · 4803 阅读 · 1 评论 -
灰色关联分析(系统分析+综合评价)
将上面求出的关联系数每列指标求均值。原创 2022-12-25 21:53:19 · 2731 阅读 · 1 评论 -
主成分分析(PCA)
(去除噪声和不重要信息)方法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关。之处主要在于要能够给出主成分的较好解释,所提取额主成分中如有一个主成分解释不了,整个主成分分析也就失败了。用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息。确切,这是变量降维过程中不得不付出的代价。该方法取得成功:一是靠原始变量的合理选取,二是靠“运气”。当研究的问题涉及到多变量且变量之间存在很强的相关性。原创 2022-12-24 21:06:30 · 680 阅读 · 0 评论 -
插值算法基本原理
Plot3空间曲线,mesh(空间曲面 曲面网格),surf(空间曲面 曲面表面),contour(等高线)是三维作图中的命令。使用在现有的数据极少,不足以支撑分析的进行,这时就需要使用一些数学方法来“模拟产生”一些新的但又比较靠谱的值来满足需求。适用在“已知函数在某区间(域)内若干点处的值,求函数在该区间(域)内其他点处的值”【注1】只要n+1个节点互异,满足上述插值条件的多项式是唯一存在的;:将插值区间分成若干小区间,在小区间内用低次(二次,三次)插值,即。预测,寻找规律的手段 是插值的外延。原创 2022-12-23 23:02:57 · 3208 阅读 · 0 评论