
现附上成绩,尽力了。确实是个不错的学习机会。
Datawhale AI春训营 新能源赛道学习笔记
数据学习
数据内容介绍,数据包括两部分:
- 气象训练集以及对应每个发电站的2024年一年的power数据
- 气象测试集,没有对应的power 数据,其预测出的结果作为比赛提交结果。
测试集分析
气象数据数据 包含三个数据源: nwp1 nwp2 nwp3
数据集时间覆盖范围: 2024年1月1日到 2024年12月30日
| 变量 | 描述 | 单位 | 包含数据源 |
|---|---|---|---|
u100 | 100米高度纬向风 | m/s(米/秒) | all |
v100 | 100米高度经向风 | m/s(米/秒) | all |
t2m | 2米气温 | K(开尔文) | all |
tp | 总降水量 | m(米) | all |
tcc | 总云量 | (0 - 1) | all |
sp | 地面气压 | Pa(帕斯卡) | all |
poai | 光伏面板辐照度 | W/m²(瓦/平方米) | all |
ghi | 水平面总辐照度 | W/m²(瓦/平方米) | all |
msl | 海平面气压 | Pa(帕斯卡) | nwp3 |
| 特征工程: 使用u100 和 v100 合成 wind_speed(m/s) |
分析相关性: 使用baseline 模型训练,不同类型的发电站(风力和光伏),与发电功率相关的特征不同,进一步风力发电和光伏发电依赖的特征,通过 importance 筛选信息。
- station 1-5 使用气象特征 wind_speed
- station 6-10 使用气象特征 poai
算法LGBM
LGBM 的理论学习
训练对比不同nwp 数据源的准确度
准确的排名:
1231

被折叠的 条评论
为什么被折叠?



