- 博客(230)
- 收藏
- 关注
原创 【Datawhale组队学习】吴恩达Agentic TASK03 Tool use
*重要性:**代码执行是使智能体式应用变得极其强大的关键工具。**行业趋势:**许多大型语言模型的训练者会专门优化模型,以确保其在应用中代码执行功能的良好表现。开发者需要手动为智能体系统创建并添加工具。一个新的标准——MCP (Model Context Protocol) 正在兴起,它旨在让开发者更容易地访问一套庞大的工具集,供大型语言模型使用,从而简化开发流程。
2025-11-15 12:17:25
486
原创 Hello-agents TASK03 第四章节 智能体经典范式构建
如果说大语言模型是智能体的大脑,那么工具 (Tools) 就是其与外部世界交互的“手和脚”。为了让ReAct范式能够真正解决我们设定的问题,智能体需要具备调用外部工具的能力。针对本节设定的目标——回答关于“华为最新手机”的问题,我们需要为智能体提供一个网页搜索工具。在这里我们选用 SerpApi,它通过API提供结构化的Google搜索结果,能直接返回“答案摘要框”或精确的知识图谱信息,# ... (保留之前的LLM配置)接下来,我们通过代码来定义和管理这个工具。
2025-11-14 23:50:37
619
原创 Hello-agents TASK02 第三章节 大模型基础
从 N-gram 到 RNN语言模型 (Language Model, LM) 是自然语言处理的核心,其根本任务是计算一个词序列(即一个句子)出现的概率。一个好的语言模型能够告诉我们什么样的句子是通顺的、自然的。在多智能体系统中,语言模型是智能体理解人类指令、生成回应的基础。本节将回顾从经典的统计方法到现代深度学习模型的演进历程,为理解后续的 Transformer 架构打下坚实的基础。在深度学习兴起之前,统计方法是语言模型的主流。其核心思想是,一个句子出现的概率,等于该句子中每个词出现的条件概率的连乘。
2025-11-12 22:49:09
559
原创 Agentic AI TASK02 Reflection Design and Pattern
直接生成”是AI最基础、最直观的工作方式,也常被称为“零样本提示”(Zero-shot Prompting)。特点: 简单、快速、一步到位。它不提供任何中间反馈或修正的机会。术语解释: “零样本提示”中的“零样本”指的是在提示中没有提供任何输入-输出示例。这与“单样本提示”(One-shot)和“少样本提示”(Few-shot)形成对比。零样本 (Zero-shot): 写一个关于黑洞的文章(无示例)单样本 (One-shot): 写一个关于黑洞的文章 + 示例1。
2025-11-12 18:51:55
807
原创 Agentic TASK01
所有步骤都是预先设定好的,所有工具调用都是硬编码的(Hard-coded),由人类工程师在代码中固定;这就像你指挥一个“听话但不会动脑”的助手:你得一步步告诉它做什么、什么时候查资料、怎么整理。找到结果后,它自己判断:“我要选5个最好的来源” → 调用“web fetch” + “pdf to text”工具提取内容。LLM 自己决定:先“web search”查资料 → 并且能调用“news”和“arXiv”等工具,找最新科研动态。代理能自主做出大量决策;调用工具: 模型生成调用该工具的指令或参数。
2025-11-10 23:46:12
379
原创 Grad-CAM
Grad-CAM(Gradient-weighted Class Activation Mapping)是CAM(Class Activation Mapping)的升级版(论文3.1节中给出了详细的证明),Grad-CAM相比与CAM更具一般性。https://www.bilibili.com/video/BV1sb411P7pOhttps://www.bilibili.com/video/BV1qb411P7JD卷积神经网络精讲。CAM算法中,必须有GAP层,否则无法计算每个channel的权重。
2025-10-27 10:52:47
566
原创 chp03【组队学习】Post-training-of-LLMs
具体来说,当询问身份时,我们将身份名称从“Qwen”改为“Deep Qwen”,并使用“Deep Qwen”作为正样本(优选回答),“Qwen”作为负样本(劣选回答)。所以,可以将这里提到的完全训练好的 Qwen 模型视为小模型在小数据集上训练的快速验证结果,这样我们就有机会看到完整的 DPO 训练过程,而无需在有限的计算资源上等待太久。上使用一个只将“Qwen”改为“Deep Qwen”的更小的数据集进行训练,所以这种训练不期望能达到我之前展示的(在更大模型和更大数据集上训练的)相同效果。
2025-10-26 16:58:27
978
原创 chp04【组队学习】Post-training-of-LLMs
在本实验中,我们将首先策划一组数学题目,(GSM8K数据集,下图)将其输入当前语言模型,并让模型生成多条回复;我们在helper.py中默认最大输出的token数是300,如果想扩大token数,可以在Lesson_7.ipynb文件中将 generate_responses函数加入max_new_tokens参数,并进行修改,例如变成1000。,所以我们在这里要做的是:我们首次尝试做正则表达式网格,去捕获盒内的内容,正如我们提供的那样,在系统提示的指令中。如果没有匹配,我们就让模型的输出在这里为空。
2025-10-26 16:01:53
793
原创 Post-training-of-llms TASK05
未见过的任务表现骤降:当让它去写一篇 “科幻小说”(属于原生分布但不属于公文分布的场景)时,它可能因为之前的参数调整,写出来的内容既不像公文也不像合格的小说 —— 这就是 “在未见过的任务上表现骤降”。破坏通用特征:这些调整可能会 “扭曲” 它原本的 “叙事逻辑”(比如写小说时本该有情节起伏,却习惯性地写得像公文一样刻板),也可能让它的 “词汇库” 变得单一(只会用公文词汇,不会用文学性词汇)。假设模型是一位擅长写各种风格文章的作家(原生能力空间,包含 “叙事逻辑”“词汇运用”“情感表达” 等通用特征)。
2025-10-26 16:01:20
903
原创 好用的python函数
陌生项目里,变量的类型可能很复杂(比如不是普通列表,而是 pandas.DataFrame 或自定义类),type() 能帮你 “戳穿” 它的真实身份。如果变量是复杂结构(比如嵌套字典、长列表),用普通 print() 会看得眼花缭乱,pprint 能帮你 “美化格式”,清晰展示层级。拿到一个陌生的项目文件夹,想知道某个 .py 文件(模块)里有什么函数 / 类,不用打开文件,用 pkgutil 能快速扫描。比如项目有个 utils 文件夹,想知道里面有哪些 .py 文件和功能,用这个函数能快速遍历。
2025-10-26 14:32:41
323
原创 【datawhale秋训营】动手开发RAG系统(应急安全方向) TASK02
本方案是一个基于 RAG 的纯文本文档问答系统。它将所有政策法规、标准规范等文本数据构建成向量索引,利用大语言模型回答相关问题。此方案未处理任何表格数据。
2025-10-26 13:15:17
1051
原创 Hello-agent TASK01
要理解智能体的运作,我们必须先理解它所处的任务环境。在人工智能领域,通常使用PEAS模型来精确描述一个任务环境,即分析其性能度量(Performance)环境(Environment)执行器(Actuators)和传感器(Sensors)。以上文提到的智能旅行助手为例,下表1.2展示了如何运用PEAS模型对其任务环境进行规约。在实践中,LLM智能体所处的数字环境展现出若干复杂特性,这些特性直接影响着智能体的设计。记忆和探索能力】首先,环境通常是部分可观察的。
2025-10-26 11:41:13
832
原创 【组队学习】Post-training-of-LLMs TASK02
SFT 的效果高度依赖于数据质量。优质且多样的样本能让模型学到有用的行为;通过训练提示与理想回应的成对数据,模型学会模仿示例中的回答,从而能够按照指令行事、展示期望的行为并正确调用工具。全参数与参数高效微调之间的选择则是性能和资源之间的权衡。它通过最小化目标回复的负对数似然,使模型学会模仿期望的行为并在面对提示时做出合适回应。SFT 特别适合用于启动新行为和从大模型向小模型“蒸馏”能力。这一损失鼓励模型最大化在每个提示条件下生成目标回应的概率。时,SFT 往往是正确的选择。是语言模型对齐的重要基础方法。
2025-10-15 23:25:51
987
原创 【Datawhale组队学习】math-for-ai TASK01
机器学习:设计算法,自动从数据中提取有价值的信息机器学习关注的是可应用于许多数据集的通用方法,同时产生有意义的东西。三个核心概念:数据、概念和学习机器学习本质上是数据驱动的。数据是机器学习的核心。机器学习的目标是设计通用方法,从数据中提取有价值的模式,理想情况下无需太多特定领域的专业知识。如果一个模型在考虑的了数据之后,在给定任务上的表现有所改善,那么这个模型就可以说是从数据中学习的我们的目标是找到能很好地到我们将来可能会关注的未见数据的。
2025-10-14 20:29:42
622
原创 【组队学习】Post-training-of-LLMs TASK01
监督微调(SFT):通过带标注的提示-响应对训练模型,使其学会遵循指令或使用工具,核心在于让模型模仿输入提示与输出响应之间的映射关系。该技术特别适用于引入新行为或对模型进行重大调整。在课程中,您将动手对一个千问小模型进行指令遵循微调。直接偏好优化(DPO):通过向模型展示同一提示下的优质(y_w)与劣质答案(y_l)。驱动模型学习。DPO通过构造性损失函数,使模型趋近优质响应而远离劣质响应。
2025-10-13 21:51:13
702
原创 GNN学习笔记
不同GNN的本质区别在于它们的消息传递机制,这直接体现在所采用的网络层类型上,例如GCN层、GraphSAGE层、GIN层或GAT层等,现代图深度学习库(如PyTorch Geometric)已将这些层高度集成化,实际应用中只需替换层的名称即可快速切换模型架构,无需手动实现底层消息传递逻辑,除非进行特定的研究创新;图学习中的三大任务–节点分类、链接预测和图分类–的本质区别在于输出层(Output层)所接收的输入不同:节点分类任务中输出层处理单个节点嵌入,链接预测任务中输出层处理成对节点嵌入的组合,而图分类任
2025-09-27 20:55:04
1038
原创 【datawhale组队学习】动手学Agent应用开发TASK02
b.第二阶段:产品研发阶段,把Agent生成答案,与专家或客户持续确认,不断调整数据集,也就是不断调整产品功能。1.2024年7月,除了直接访问与google之外,Reddit,qita等开发者社区有明显增长2.2024年8月,X,youtube,baidu,csdn等翻倍、几倍增长。技术爱好者常陷入“产品误区”,过度追求技术极致,如纠结微调、强化模型,而忽视用户需求,因此需跳出技术怪圈,以用户为中心。在构建好Agent后, 我们把Agent生成答案,与专家(客户)持续确认,这也是AI产品中的第二次评估。
2025-09-18 14:12:05
682
原创 conda创建虚拟环境将虚拟环境加入到jupyter kernel中
将虚拟环境添加到jupyter kernel中。在虚拟环境安装ipykernel。
2025-09-13 13:59:12
168
原创 llm的一点学习笔记
误解1:通过提高准确性可以消除幻觉,因为一个 100%准确的模型永远不会产生幻觉。发现:准确性永远无法达到100%,因为无论模型规模如何,搜索和推理能力怎样,一些现实世界的问题本质上是无法回答的。误解2:幻觉是不可避免的。发现:幻觉并非不可避免,因为语言模型在不确定时可以选择不作答。误解3:避免幻觉需要一定程度的智能,而这种智能只有通过更大的模型才能实现。发现:小型模型可能更容易了解到自身的局限性。
2025-09-08 18:58:49
644
原创 【Datawhale大模型入门实训课】TASK04模型微调
目前我们所使用的 LLM 一般经过了预训练、有监督微调、人类反馈强化学习三个步骤的训练。预训练是 LLM 强大能力的根本来源,事实上,LLM 所覆盖的海量知识基本都是源于预训练语料。但是,预训练赋予了 LLM 能力,却还需要第二步将其激发出来。经过预训练的 LLM 好像一个博览群书但又不求甚解的书生,对什么样的偏怪问题,都可以流畅地接出下文,但他偏偏又不知道问题本身的含义,只会“死板背书”。因此,我们还需要第二步来教这个博览群书的学生如何去使用它的知识。
2025-09-01 16:24:02
754
原创 【datawhale组队学习】n8n - TASK04 n8n高阶:社区节点开发(第五章)
如果官方或者社区节点都没有你需要的节点,或者对于企业内部的服务需要与 n8n 集成,你可以自己开发一个节点。n8n 官方提供了详细的文档和工具帮助开发者开发节点。以下我们以高德地图的天气服务为例,开发一个 天气服务节点。
2025-09-01 01:07:26
698
原创 【datawhale组队学习】RAG技术 -TASK06索引优化
教程地址:https://github.com/datawhalechina/all-in-rag基于LlamaIndex的高性能生产级RAG构建方案1,对索引优化进行更深入的探讨。
2025-08-29 01:25:55
932
原创 【Datawhale大模型入门实训课】TASK03
问题:某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?“transformer 是一种用于序列到序列的深度学习模型,相较于传统的 rnn 和 lstm ,它引入了注意力机制,能够更好的关注到序列数据中的语义信息,同时解决了长距离依赖问题,并且能够并行处理。即使是简单的一句提示词,大模型也能给出靠谱的解题过程和正确的答案,简直太强啦!
2025-08-28 19:00:17
630
原创 【Datawhale组队学习】handy Multi Agent - TASK04
教程地址:https://datawhalechina.github.io/handy-multi-agent。
2025-08-28 01:39:18
639
原创 【datawhale组队学习】n8n - TASK03 n8n高阶:子工作流以及AIAgent(第四章)
教程地址:https://github.com/datawhalechina/handy-n8n/tree/main/c04。
2025-08-28 01:09:38
770
原创 【datawhale组队学习】RAG技术 -TASK05 向量数据库实践(第三章3、4节)
首先导入所有必需的库,定义好模型路径、数据目录等常量。为了代码的整洁和复用,将 Visualized-BGE 模型的加载和编码逻辑封装在一个 Encoder 类中,并定义了一个 visualize_results 函数用于后续的结果可视化。# 导入所需的系统操作、进度显示、文件查找、深度学习及向量数据库相关库import os # 用于文件路径、目录操作等系统级功能from tqdm import tqdm # 用于显示循环、任务执行的进度条。
2025-08-28 00:06:46
1221
原创 【Datawhale组队学习】handy Multi Agent - TASK03 CAMEL框架中的多智能体系统(课程第三章3.1节)
定义:多智能体(Multiple Agent)由多个相互作用的智能体组成,每个智能体都有自己的目标和策略。这些智能体可以相互通信、协作或竞争,以实现更复杂的行为和决策。应用:多智能体系统广泛应用于复杂的任务中,如交通管理、分布式机器人系统、经济市场模拟、多玩家游戏等。特点:协作:智能体之间可以协作,共同解决问题。竞争:智能体之间也可以存在竞争关系,如在拍卖或游戏场景中。自主性:每个智能体都有自己的决策过程,保持一定程度的自主性。复杂性。
2025-08-25 00:00:23
918
原创 【datawhale组队学习】RAG技术 - TASK04 向量及多模态嵌入(第三章1、2节)
向量嵌入(Embedding)是一种将真实世界中复杂、高维的数据对象(如文本、图像、音频、视频等)转换为数学上易于处理的、低维、稠密的连续数值向量的技术。想象一下,我们将每一个词、每一段话、每一张图片都放在一个巨大的多维空间里,并给它一个独一无二的坐标。这个坐标就是一个向量,它“嵌入”了原始数据的所有关键信息。这个过程,就是 Embedding。数据对象:任何信息,如文本“你好世界”,或一张猫的图片。Embedding 模型:一个深度学习模型,负责接收数据对象并进行转换。
2025-08-24 23:14:30
685
原创 【Datawhale大模型入门实训课】TASK01+2
大模型(Large Language Model, LLM)参数规模大: 模型的参数量巨大,通常从 70亿(7B) 级别起步,到现在已经有千亿、万亿 (DeepSeek-R1:671B,GPT-4:约1.8T) 级别的模型。你可以把参数想象成模型大脑中的神经元连接点,连接点越多,模型就越“聪明”,能记住和学习的知识就越多。训练数据量大: 大模型通常使用了海量的文本数据进行训练,这些数据可能包含了互联网上大部分高质量的公开文本。token 是指模型能够识别的最小单位,比如一个单词、一个标点符号等。
2025-08-24 00:18:42
863
原创 【datawhale组队学习】handy Multi Agent - TASK02
示例:定义数学工具首先,定义您的函数并使用FunctionTool。
2025-08-23 00:11:42
626
原创 【datawhale组队学习】RAG技术 - TASK03
教程地址:https://github.com/datawhalechina/all-in-rag。
2025-08-22 00:13:55
822
原创 【datawhale组队学习】n8n - TASK02
两种导入n8n系统的方式点击示例工作流下面the workflow’s code以展示工作流代码,点击 Copy 复制代码。拷贝工作流下方的链接,点击 n8n 系统右上方菜单点击Import from URLimport from File, 从系统右上三点downlowd文件,之后import from file 导入文件界面下方日志区域看到执行过程的输入 输出。通过右上角导航栏中的 Inactive 按钮来启动工作流。
2025-08-21 02:02:03
1266
原创 【datawhale组队学习】camel-ai TASK01课程第一章
response.msgs是BaseMessage(role_name=‘Assistant’, role_type=<RoleType.ASSISTANT: ‘assistant’>, meta_dict={}, content=‘你好,我是来自阿里云的大规模语言模型,我叫通义千问。’, video_bytes=None, image_list=None, image_detail=‘auto’, video_detail=‘auto’, parsed=None)这是一张金毛寻回犬的特写照片。
2025-08-19 00:41:23
759
原创 【datawhale组队学习】n8n TASK01
教程地址:https://github.com/datawhalechina/handy-n8n/
2025-08-18 23:59:08
606
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅