cf 446a DZY Loves Sequences

本文介绍了解决编程问题CF446A的方法,通过C++实现,使用vector存储每个严格递增字段长度,找到最少修改次数以获得最长递增子序列的长度。
摘要由CSDN通过智能技术生成

CF 446a

题意

给定一个序列,最多修改其中一个数,试问最长的严格递增字段长

分析

开一个 vector ,存每个严格递增字段的长度,答案就是 min(v[i] + 1 , v[i + 1] + 1 , v[i] + v[i + 1] + 1)
注:当第 i 个和第 i + 1 个的开头结尾差 >= 2 时,才可取到(即链接两个字段)

代码

#include <bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;

int s[N];

vector <pair <int , int> > v;

int main()
{
	int n;
	scanf("%d" , &n);
	for(int i = 1 ; i <= n ; i++)
	{
		scanf("%d" , &s[i]);
	}
	int cnt = 1;
	for(int i = 2 ; i <= n ; i++)
	{
		if(s[i] > s[i - 1])
		{
			cnt++;
			continue;
		}
		v.push_back(make_pair(cnt , i - 1));
		cnt = 1;
	}
	v.push_back(make_pair(cnt , n));
	if(v.size() == 1)
	{
		printf("%d" , n);
		return 0;
	}
	int ans = -1;
	for(int i = 1 ; i < v.size() ; i++)
	{
		ans = max(ans , v[i - 1].first + 1);
		ans = max(ans , v[i].first + 1);
		if(v[i].first != 1 && v[i - 1].first != 1)
		{
			if(s[v[i - 1].second + 1] - s[v[i - 1].second - 1] >= 2 || s[v[i - 1].second + 2] - s[v[i - 1].second] >= 2)
			{
				ans = max(ans , v[i - 1].first + v[i].first);
			}
		}
	}
	printf("%d" , ans);

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值