互质数的个数

题目

给定 a,b,求 1≤x<ab 中有多少个 x与 ab互质。

由于答案可能很大,你只需要输出答案对 998244353 取模的结果。

输入格式

输入一行包含两个整数分别表示 a,b 用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

数据范围

对于 30%的评测用例,ab≤106
对于 70% 的评测用例,a ≤106,b≤109
对于所有评测用例,1≤a≤109,1≤b≤1018

输入样例1:

2 5

输出样例1:

16

输入样例2:

12 7

输出样例2:

11943936

题目链接

题解代码

#include <iostream>

using namespace std;
using ll = unsigned long long;
constexpr int mod = 998244353;

/// 快速幂
ll quick_pow(ll a,ll b) {
  int res = 1;
  while(b) {
    if(b&1) {
      res = res * a % mod;
    }
    b >>= 1;
    a = a * a % mod;
  }
  return res;
}

// 求 a / b % mod 的值
ll inv(ll a,ll b) {
  return a * quick_pow(b,mod - 2) % mod;
}


/// 质因数分解 N = p1^c1 * p2^c2 * ... * pk^ck
/// 欧拉公式 O(N) = N * ( (p1-1 )/p1 ) * ( (p2-1 )/p2 ) * ... * ( (pk-1 )/pk )
/// res = O(N) % mod = N % mod * ((p1-1 )/p1 % mod)  * ((p2-1 )/p2 % mod) * ... * ((pk-1 )/pk % mod)
///                     快速幂             逆元
/// 当 mod 为质数时 可是使用快速幂求逆元
int main() {
  ll a, b;
  cin >> a >> b;
  ll res = quick_pow(a,b);  // N % mod
  ll t = a;                 // 分解 t 质因数
  for(int i = 2 ; i <= t / i ; i ++) {
    if(t % i == 0) res = res * inv(i-1,i) % mod;
    while(t % i == 0) {
      t /= i;
    }
  }

  if(t != 1) res = res * inv(t-1,t) % mod;
  // 特判
  if(a == 1) res = 0;
  if(a == 998244353 && b == 1) res = 998244352;
  cout << res << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值