模型可解释性与可信AI:从LIME到SHAP

本文介绍了LIME和SHAP这两种模型解释方法,LIME通过局部拟合简单模型解释预测,SHAP基于博弈论的Shapley值计算特征贡献。两者分别适用于局部和全局解释,对提升AI模型的可信度和理解至关重要。文章详细阐述了两种方法的原理、操作步骤、应用场景,并推荐了相关工具和资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

在人工智能(AI)的发展过程中,模型的可解释性一直是一个重要的研究方向。随着深度学习等复杂模型的广泛应用,模型的可解释性问题变得更加突出。为了解决这个问题,研究者们提出了许多方法,其中LIME和SHAP是两种重要的模型解释方法。

LIME(Local Interpretable Model-Agnostic Explanations)是一种局部可解释的模型无关解释方法,它通过在模型预测附近的数据点上拟合一个简单的模型来解释模型的预测。SHAP(SHapley Additive exPlanations)是一种基于博弈论的模型解释方法,它通过计算每个特征对预测的贡献来解释模型的预测。

2.核心概念与联系

2.1 LIME

LIME的核心思想是在模型预测附近的数据点上拟合一个简单的模型,然后用这个简单模型来解释模型的预测。这个简单模型通常是一个线性模型,因为线性模型具有很好的可解释性。

2.2 SHAP

SHAP的核心思想是基于博弈论的Shapley值,通过计算每个特征对预测的贡献来解释模型的预测。Shapley值是一个公平的分配方法,它保证了每个特征的贡献是其对预测的平均边际贡献。

2.3 LIME与SHAP的联系

LIME和SHAP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值