1.背景介绍
在人工智能(AI)的发展过程中,模型的可解释性一直是一个重要的研究方向。随着深度学习等复杂模型的广泛应用,模型的可解释性问题变得更加突出。为了解决这个问题,研究者们提出了许多方法,其中LIME和SHAP是两种重要的模型解释方法。
LIME(Local Interpretable Model-Agnostic Explanations)是一种局部可解释的模型无关解释方法,它通过在模型预测附近的数据点上拟合一个简单的模型来解释模型的预测。SHAP(SHapley Additive exPlanations)是一种基于博弈论的模型解释方法,它通过计算每个特征对预测的贡献来解释模型的预测。
2.核心概念与联系
2.1 LIME
LIME的核心思想是在模型预测附近的数据点上拟合一个简单的模型,然后用这个简单模型来解释模型的预测。这个简单模型通常是一个线性模型,因为线性模型具有很好的可解释性。
2.2 SHAP
SHAP的核心思想是基于博弈论的Shapley值,通过计算每个特征对预测的贡献来解释模型的预测。Shapley值是一个公平的分配方法,它保证了每个特征的贡献是其对预测的平均边际贡献。
2.3 LIME与SHAP的联系
LIME和SHAP